Advertisement

Molecular Diversity

, Volume 17, Issue 2, pp 337–344 | Cite as

Docking of a novel DNA methyltransferase inhibitor identified from high-throughput screening: insights to unveil inhibitors in chemical databases

  • José L. Medina-FrancoEmail author
  • Jakyung Yoo
Full-Length Paper

Abstract

Inhibitors of DNA methyltransferase (DNMT) are attractive compounds not only as potential therapeutic agents for the treatment of cancer and other diseases, but also as research tools to investigate the role of DNMTs in epigenetic events. Recent advances in high-throughput screening (HTS) for epigenetic targets and the availability of the first crystallographic structure of human DNMT1 encourage the integration of research strategies to uncover and optimize the activity of DNMT inhibitors. Herein, we present a binding model of a novel small-molecule DNMT1 inhibitor obtained by HTS, recently released in a public database. The docking model is in agreement with key interactions previously identified for established inhibitors using extensive computational studies including molecular dynamics and structure-based pharmacophore modeling. Based on the chemical structure of the novel inhibitor, a sequential computational screening of five chemical databases was performed to identify candidate compounds for testing. Similarity searching followed by molecular docking of chemical databases such as approved drugs, natural products, a DNMT-focused library, and a general screening collection, identified at least 108 molecules with promising DNMT inhibitory activity. The chemical structures of all hit compounds are disclosed to encourage the research community working on epigenetics to test experimentally the enzymatic and demethylating activity in vivo. Five candidate hits are drugs approved for other indications and represent potential starting points of a drug repurposing strategy.

Keywords

Cancer Docking DNMT Drug repurposing Epigenetics Natural products 

Notes

Acknowledgments

This work was supported by PAPIIT Grant IA200413 (to J.L.M-F).

Supplementary material

11030_2013_9428_MOESM1_ESM.xlsx (22 kb)
Supplementary material 1 (xlsx 22 KB)

References

  1. 1.
    Rius M, Lyko F (2012) Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 31:4257–4265. doi: 10.1038/onc.2011.601 PubMedCrossRefGoogle Scholar
  2. 2.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692. doi: 10.1016/j.cell.2007.01.029 PubMedCrossRefGoogle Scholar
  3. 3.
    Yoo J, Medina-Franco JL (2012) Inhibitors of DNA methyltransferases: insights from computational studies. Curr Med Chem 19:3475–3487PubMedCrossRefGoogle Scholar
  4. 4.
    Martinet N, Michel BY, Bertrand P, Benhida R (2012) Small molecules DNA methyltransferases inhibitors. MedChemComm 3: 263–273. doi: 10.1039/c1md00194a CrossRefGoogle Scholar
  5. 5.
    Foulks JM, Parnell KM, Nix RN, Chau S, Swierczek K, Saunders M, Wright K, Hendrickson TF, Ho K-K, McCullar MV, Kanner SB (2012) Epigenetic drug discovery: targeting DNA methyltransferases. J Biomol Screen 17:2–17. doi: 10.1177/1087057111421212 PubMedCrossRefGoogle Scholar
  6. 6.
    Halby L, Champion C, Sénamaud-Beaufort C, Ajjan S, Drujon T, Rajavelu A, Ceccaldi A, Jurkowska R, Lequin O, Nelson WG, Guy A, Jeltsch A, Guianvarc’h D, Ferroud C, Arimondo PB (2012) Rapid synthesis of new DNMT inhibitors derivatives of procainamide. ChemBioChem 13:157–165. doi: 10.1002/cbic.201100522 PubMedCrossRefGoogle Scholar
  7. 7.
    Kuck D, Singh N, Lyko F, Medina-Franco JL (2010) Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem 18:822–829. doi: 10.1016/j.bmc.2009.11.050 PubMedCrossRefGoogle Scholar
  8. 8.
    Nicola G, Liu T, Gilson MK (2012) Public domain databases for medicinal chemistry. J Med Chem 55:6987–7002. doi: 10.1021/jm300501t PubMedCrossRefGoogle Scholar
  9. 9.
    Medina-Franco JL, Caulfield T (2011) Advances in the computational development of DNA methyltransferase inhibitors. Drug Discov Today 16:418–425. doi: 10.1016/j.drudis.2011.02.003 PubMedCrossRefGoogle Scholar
  10. 10.
    Ye Y, Stivers JT (2010) Fluorescence-based high-throughput assay for human DNA (cytosine-5)-methyltransferase 1. Anal Biochem 401:168–172. doi: 10.1016/j.ab.2010.02.032 PubMedCrossRefGoogle Scholar
  11. 11.
    Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucl Acids Res 40:D1100–D1107. doi: 10.1093/nar/gkr777 PubMedCrossRefGoogle Scholar
  12. 12.
    Wang YL, Xiao JW, Suzek TO, Zhang J, Wang JY, Zhou ZG, Han LY, Karapetyan K, Dracheva S, Shoemaker BA, Bolton E, Gindulyte A, Bryant SH (2012) PubChem’s bioassay database. Nucl Acids Res 40:D400–D412. doi: 10.1093/nar/gkr1132 PubMedCrossRefGoogle Scholar
  13. 13.
    Song J, Rechkoblit O, Bestor TH, Patel DJ (2011) Structure of DNMT1–DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331:1036–1040. doi: 10.1126/science.1195380 PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng XD, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16:341–350. doi: 10.1016/j.str.2008.01.004 PubMedCrossRefGoogle Scholar
  15. 15.
    Sippl W, Jung M (2009) DNA methyltransferase inhibitors. In:, Sippl W, Jung M (eds) Epigenetic targets in drug discovery. Wiley-VCH, Weinheim, pp. 163–183. doi: 10.1002/9783527627073.ch8
  16. 16.
    Lan J, Hua S, He XN, Zhang Y (2010) DNA methyltransferases and methyl-binding proteins of mammals. Acta Biochim Biophys Sin 42:243–252. doi: 10.1093/abbs/gmq015 PubMedCrossRefGoogle Scholar
  17. 17.
    Yoo J, Kim JH, Robertson KD, Medina-Franco JL (2012) Molecular modeling of inhibitors of human DNA methyltransferase with a crystal structure: discovery of a novel DNMT1 inhibitor. Adv Protein Chem Struct Biol 87:219–247. doi: 10.1016/B978-0-12-398312-1.00008-1 PubMedCrossRefGoogle Scholar
  18. 18.
    Yoo J, Medina-Franco JL (2011) Homology modeling, docking, and structure-based pharmacophore of inhibitors of DNA methyltransferase. J Comput Aided Mol Des 25:555–567. doi: 10.1007/s10822-011-9441-1 PubMedCrossRefGoogle Scholar
  19. 19.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. doi: 10.1006/jmbi.1996.0897 PubMedCrossRefGoogle Scholar
  20. 20.
    Yoo J, Medina-Franco JL (2013) Molecular modeling and virtual screening of DNA methyltransferase inhibitors. Curr Pharm Des (in press)Google Scholar
  21. 21.
    Hernández-Campos A, Velázquez-Martínez I, Castillo R, López-Vallejo F, Jia P, Yu Y, Giulianotti MA, Medina-Franco JL (2010) Docking of protein kinase B inhibitors: implications in the structure-based optimization of a novel scaffold. Chem Biol Drug Des 76:269–276. doi: 10.1111/j.1747-0285.2010.01002.x PubMedGoogle Scholar
  22. 22.
    Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucl Acids Res 36:D901–D906. doi: 10.1093/nar/gkm958 PubMedCrossRefGoogle Scholar
  23. 23.
    Chen CYC (2011) TCM Database@Taiwan: the world’s largest traditional chinese medicine database for drug screening in silico. PLoS ONE 6:e15939. doi: 10.1371/journal.pone.0015939
  24. 24.
    López-Vallejo F, Giulianotti MA, Houghten RA, Medina-Franco JL (2012) Expanding the medicinally relevant chemical space with compound libraries. Drug Discov Today 17:718–726. doi: 10.1016/j.drudis.2012.04.001 PubMedCrossRefGoogle Scholar
  25. 25.
    Yongye AB, Waddell J, Medina-Franco JL (2012) Molecular scaffold analysis of natural products databases in the public domain. Chem Biol Drug Des 80:717–724. doi: 10.1111/cbdd.12011 PubMedCrossRefGoogle Scholar
  26. 26.
    Medina-Franco JL, Martínez-Mayorga K, Peppard TL, Del Rio A (2013) Chemoinformatic analysis of GRAS (Generally Recognized as Safe) flavor chemicals and natural products. PLoS ONE 7:e50798. doi: 10.1371/journal.pone.0050798 CrossRefGoogle Scholar
  27. 27.
    Maggiora GM (2006) On outliers and activity cliffs—why QSAR often disappoints. J Chem Inf Model 46:1535–1535. doi: 10.1021/ci060117s PubMedCrossRefGoogle Scholar
  28. 28.
    Medina-Franco JL (2012) Scanning structure–activity relationships with structure–activity similarity and related maps: from consensus activity cliffs to selectivity switches. J Chem Inf Model 52:2485–2493. doi: 10.1021/ci300362x PubMedCrossRefGoogle Scholar
  29. 29.
    Holliday JD, Kanoulas E, Malim N, Willett P (2011) Multiple search methods for similarity-based virtual screening: analysis of search overlap and precision. J Cheminform 3:29. doi: 10.1186/1758-2946-3-29 PubMedCrossRefGoogle Scholar
  30. 30.
    Yongye A, Byler K, Santos R, Martínez-Mayorga K, Maggiora GM, Medina-Franco JL (2011) Consensus models of activity landscapes with multiple chemical, conformer and property representations. J Chem Inf Model 51:1259–1270. doi: 10.1021/ci200081k PubMedCrossRefGoogle Scholar
  31. 31.
    Kuck D, Caulfield T, Lyko F, Medina-Franco JL (2010) Nanaomycin a selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol Cancer Ther 9:3015–3023. doi: 10.1158/1535-7163.MCT-10-0609 PubMedCrossRefGoogle Scholar
  32. 32.
    Singh N, Dueñas-González A, Lyko F, Medina-Franco JL (2009) Molecular modeling and dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem 4:792–799. doi: 10.1002/cmdc.200900017 Google Scholar
  33. 33.
    Gabbara S, Sheluho D, Bhagwat A (1995) Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active. Biochemistry 34:8914–8923. doi: 10.1021/bi00027a044 PubMedCrossRefGoogle Scholar
  34. 34.
    Zangi R, Arrieta A, Cossio FP (2010) Mechanism of DNA methylation: the double role of DNA as a substrate and as a cofactor. J Mol Biol 400:632–644. doi: 10.1016/j.jmb.2010.05.021 PubMedCrossRefGoogle Scholar
  35. 35.
    Santi DV, Garrett CE, Barr PJ (1983) On the mechanism of inhibition of DNA cytosine methyltransferases by cytosine analogs. Cell 33:9–10. doi: 10.1016/0092-8674(83)90327-6 PubMedCrossRefGoogle Scholar
  36. 36.
    Wu JC, Santi DV (1987) Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem 262:4778–4786PubMedGoogle Scholar
  37. 37.
    Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem 3:274–293. doi: 10.1002/1439-7633(20020402)3:4<274:AID-CBIC274>3.0.CO;2-S PubMedCrossRefGoogle Scholar
  38. 38.
    Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683. doi: 10.1038/nrd1468 PubMedCrossRefGoogle Scholar
  39. 39.
    Duenas-Gonzalez A, Garcia-Lopez P, Herrera LA, Medina-Franco JL, Gonzalez-Fierro A, Candelaria M (2008) The prince and the pauper. A tale of anticancer targeted agents. Mol Cancer 7:82. doi: 10.1186/1476-4598-7-82 PubMedCrossRefGoogle Scholar
  40. 40.
    Yoo J, Medina-Franco JL (2012) Towards the chemoinformatic-based identification of DNA methyltransferase inhibitors: 2D- and 3D-similarity profile of screening libraries. Curr Comput Aided Drug Des 8:317–329. doi: 10.2174/157340912803519606 Google Scholar
  41. 41.
    Candelaria M, Herrera A, Labardini J, González-Fierro A, Trejo-Becerril C, Taja-Chayeb L, Pérez-Cárdenas E, de la Cruz-Hernández E, Arias-Bofill D, Vidal S, Cervera E, Dueñas-Gonzalez A (2011) Hydralazine and magnesium valproate as epigenetic treatment for myelodysplastic syndrome. Preliminary results of a phase-II trial. Ann Hematol 90:379–387. doi: 10.1007/s00277-010-1090-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  2. 2.College of PharmacyEwha Womans UniversitySeoulKorea

Personalised recommendations