Molecular Diversity

, Volume 17, Issue 1, pp 151–196 | Cite as

Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future

  • Rudra Narayan Das
  • Kunal RoyEmail author
Comprehensive Review


In order to protect the life of all creatures living in the environment, the toxicity arising from various hazardous chemicals must be controlled. This imposes a serious responsibility on different chemical, pharmaceutical, and other biological industries to produce less harmful chemicals. Among various international initiatives on harmful aspects of chemicals, the ‘Green Chemistry’ ideology appears to be one of the most highlighted concepts that focus on the use of eco-friendly chemicals. Ionic liquids are a comparatively new addition to the huge garrison of chemical compounds released from the industry. Extensive research on ionic liquids in the past decade has shown them to be highly useful chemicals with a good degree of thermal and chemical stability, appreciable task specificity and minimal environmental release resulting in a notion of ‘green chemical’. However, studies have also shown that ionic liquids are not intrinsically non-toxic agents and can pose severe degree of toxicity as well as the risk of bioaccumulation depending upon their structural components. Moreover, ionic liquids possess issues of waste generation during synthesis as well as separation problems. Predictive quantitative structure–activity relationship (QSAR) models constitute a rational opportunity to explore the structural attributes of ionic liquids towards various physicochemical and toxicological endpoints and thereby leading to the design of environmentally more benevolent analogues with higher process selectivity. Such studies on ionic liquids have been less extensive compared to other industrial chemicals. The present review attempts to summarize different QSAR studies performed on these chemicals and also highlights the safety, health and environmental issues along with the application specificity on the dogma of ‘green chemistry’.


QSAR QSPR QSTR Ionic liquids  Green solvents Toxicity Physico-chemical property 


  1. 1.
    World Commission on Environment and Development (1987) Our common future. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Proceedings of the OECD workshop on sustainable chemistry: 15–17 October (1998) ENV/JM/MONO(99)19. Accessed 19 Sept 2012
  3. 3.
    Need for research and development programmes in sustainable chemistry, No. 15 (2002) ENV/JM/MONO(2002) 12. Accessed 19 Sept 2012
  4. 4.
    Pollution Prevention Act (1990) 42 U.S.C., Sections 13101–13109. Accessed 19 Sept 2012
  5. 5.
    Ember L (1991) Strategies for reducing pollution at the source are gaining ground. Chem Eng News 69:7–16. doi: 10.1021/cen-v069n027.p007 Google Scholar
  6. 6.
    INCA Consortium. Accessed 19 Sept 2012
  7. 7.
    Green Chemistry Network (2012) Accessed 19 Sept 2012
  8. 8.
    Rio Declaration on Environment and Development (1992) Rio de Janeiro, Brazil, June 3–14. Accessed 19 Sept 2012
  9. 9.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Sheldon RA (1993) The role of catalysis in waste minimization. In: Weijnen MPC, Drinkenburg AAH (eds) Precision process technology: perspectives for pollution prevention. Kluwer, Dordrecht, pp 125–138CrossRefGoogle Scholar
  11. 11.
    Gani R, Jime’nez-Gonzalez C, Kate A, Crafts PA, Jones M, Powell L, Atherton JH, Cordiner JL (2006) A modern approach to solvent selection. Chem Eng 1:30–41Google Scholar
  12. 12.
    Savaiko B (2004) A promising future for ethanol. World Ethanol Biofuels Rep 17:20–22Google Scholar
  13. 13.
    Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278. doi: 10.1039/b418069k CrossRefGoogle Scholar
  14. 14.
    Ertl G, Knözinger H, Weitkamp J (1997) (eds) Handbook of heterogeneous catalysis, 5 volume Set. VCH, WeinheimGoogle Scholar
  15. 15.
    Sheldon RA (1994) Consider the environmental quotient. Chemtech 24:38–47Google Scholar
  16. 16.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11%3c2004:AID-ANIE2004%3e3.0.CO;2-5 Google Scholar
  17. 17.
    Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Green chemistry: science and politics of change. Science 297:807–810. doi: 10.1126/science.297.5582.807 PubMedCrossRefGoogle Scholar
  18. 18.
    Constable DJC, Curzons AD, Cunningham VL (2002) Metrics to ‘green’ chemistry—which are the best? Green Chem 4:521–527. doi: 10.1039/B206169B CrossRefGoogle Scholar
  19. 19.
    Stark A, Seddon KR (2007) Ionic liquids. In: Seidel A (ed) Kirk-Othmer encyclopaedia of chemical technology, vol 26. Wiley, New Jersey, pp 836–920Google Scholar
  20. 20.
    Wilkes JS (2002) A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem 4:73–80. doi: 10.1039/B110838G CrossRefGoogle Scholar
  21. 21.
    Walden P (1914) Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzener Salze (Molecular weights and electrical conductivity of several fused salts). Bull Acad Impe’r Sci St Pe’tersbourg 8:405–422Google Scholar
  22. 22.
    Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 13:965–966. doi: 10.1039/C39920000965 CrossRefGoogle Scholar
  23. 23.
    Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47:654–670. doi: 10.1002/anie.200604951 CrossRefGoogle Scholar
  24. 24.
    Rogers RD, Seddon KR (2002) (eds) Ionic liquids: industrial applications for green chemistry, ACS Symp Ser, vol 818. American Chemical Society, Washington, DCGoogle Scholar
  25. 25.
    Yoshida Y, Saito G (2010) Design of functional ionic liquids using magneto- and luminescent-active anions. Phys Chem Chem Phys 12:1675–1684. doi: 10.1039/B920046K PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M (2005) Magnitude and directionality of interaction in ion pairs of ionic liquids? Relationship with ionic conductivity. J Phys Chem B 109:16474–16481. doi: 10.1021/jp0533628 PubMedCrossRefGoogle Scholar
  27. 27.
    Antonietti M, Kuang DB, Smarsly B, Yong Z (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992. doi: 10.1002/chin.200447230 CrossRefGoogle Scholar
  28. 28.
    Suarez PAZ, Einloft S, Dullius JEL, de Souza RF, Dupont J (1998) Synthesis and physical-chemical properties of ionic liquids based on 1-\(n\)-butyl-3-methylimidazolium cation. J Chim Phys 95:1626–1639. doi:  10.1051/jcp:1998103 CrossRefGoogle Scholar
  29. 29.
    Borra EF, Seddiki O, Angel R, Eisenstein D, Hickson P, Seddon KR, Worden SP (2007) Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447:979–981. doi: 10.1038/nature05909 Google Scholar
  30. 30.
    Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M (2006) Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]\(^{-}\). J Power Sources 160:1308–1313. doi: 10.1016/j.jpowsour.2006.02.018 Google Scholar
  31. 31.
    Kuang D, Wang P, Ito S, Zakeeruddin SM, Grätzel M (2006) Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. J Am Chem Soc 128:7732–7733. doi: 10.1021/ja061714y PubMedCrossRefGoogle Scholar
  32. 32.
    Fei Z, Geldbach TJ, Zhao D, Dyson PJ (2006) From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem Eur J 12:2122–2130. doi: 10.1002/chem.200500581 PubMedCrossRefGoogle Scholar
  33. 33.
    Hunt PA, Kirchner B, Welton T (2006) Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem Eur J 12:6762–6775. doi: 10.1002/chem.200600103 PubMedCrossRefGoogle Scholar
  34. 34.
    Hamaguchi H-O, Ozawa R (2005) Structure of ionic liquids and ionic liquid compounds: are ionic liquids genuine liquids in the conventional sense? Adv Chem Phys 131:85–104. doi: 10.1002/0471739464.ch3 CrossRefGoogle Scholar
  35. 35.
    Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350. doi: 10.1590/S0103-50532004000300002 CrossRefGoogle Scholar
  36. 36.
    Triolo A, Rossina O, Bleif H-J, Di Cola E (2007) Nanoscale segregation in room temperature ionic liquids. J Phys Chem B 111:4641–4644. doi: 10.1021/jp067705t PubMedCrossRefGoogle Scholar
  37. 37.
    Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407. doi: 10.1039/B107270F CrossRefGoogle Scholar
  38. 38.
    Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzeb M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178. doi: 10.1021/ic951325x PubMedCrossRefGoogle Scholar
  39. 39.
    Keskin S, Kayrak-Talay D, Akman U, Hortaçsu Ö (2007) A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluids 43:150–180. doi: 10.1016/j.supflu.2007.05.013 CrossRefGoogle Scholar
  40. 40.
    Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357–358:97–98. doi: 10.1016/S0040-6031(00)00373-7 CrossRefGoogle Scholar
  41. 41.
    McEwen AB, Goldman JL, Wasel D, Hargens L (2000) Proc Electrochem Soc 99–41:222–227Google Scholar
  42. 42.
    Kokorin A (ed) (2011) Ionic liquids: theory, properties, new approaches. In Tech, Rijeka, Croatia. doi: 10.5772/603
  43. 43.
    Carmichael AJ, Hardacre C, Holbrey JD, Seddon KR, Nieuwenhuyzen M (2000) Structure and bonding in ionic liquids. Proc Electrochem Soc 99–41:209–221Google Scholar
  44. 44.
    Petkovic M, Seddon KR, Rebelo NLP, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403. doi: 10.1039/c004968a PubMedCrossRefGoogle Scholar
  45. 45.
    Burrell GL, Burgar IM, Separovicc F, Dunlop NF (2010) Preparation of protic ionic liquids with minimal water content and 15N NMR study of proton transfer. Phys Chem Chem Phys 12:1571–1577. doi: 10.1039/B921432A PubMedCrossRefGoogle Scholar
  46. 46.
    Widegren JA, Magee JW (2007) Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. J Chem Eng Data 52:2331–2338. doi: 10.1021/je700329a CrossRefGoogle Scholar
  47. 47.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150. doi: 10.1039/B006677J PubMedCrossRefGoogle Scholar
  48. 48.
    Earle MJ, Katdare SP, Seddon KR (2004) Paradigm confirmed: the first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org Lett 6:707–710. doi: 10.1021/ol036310e PubMedCrossRefGoogle Scholar
  49. 49.
    Chauvin Y (2006) Olefin Metathesis: The Early Days (Nobel Lecture). Angew Chem Int Ed 45:3740–3747. doi: 10.1002/anie.200601234 CrossRefGoogle Scholar
  50. 50.
    Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–364. doi: 10.1038/nmat907 PubMedCrossRefGoogle Scholar
  51. 51.
    Beste Y, Eggersmann M, Schoenmakers H (2005) Extractive distillation with ionic fluids. Chem Ing Tech 77:1800–1808. doi: 10.1002/cite.200500154 CrossRefGoogle Scholar
  52. 52.
    Stegmann V, Massonne K (2005) Method for producing haloalkanes from alcohols. WO Pat. 2005 026089Google Scholar
  53. 53.
  54. 54.
    French AD, Bertoniere NR, Brown RM, Chanzy H, Gray D, Hattori K, Glasser W (2007) In: Seidel A (ed) Kirk-Othmer encyclopaedia of chemical technology, vol 5, 5th edn. Wiley, Hoboken, pp 360–394Google Scholar
  55. 55.
    Air Products (2007) A new system for delivering ion implantation gases. Accessed 19 Sept 2012
  56. 56.
    Central Glass Co. (2007) Japan. Accessed 19 Sept 2012
  57. 57.
    Adler R (2006) Reports on science and technology. Linde Technology, Wiesbaden. Accessed 19 Sept 2012
  58. 58.
    Schmid CR, Beck CA, Cronin JS, Staszak MA (2004) Demethylation of 4-methoxyphenylbutyric acid using molten pyridinium hydrochloride on multikilogram scale. Org Process Res Dev 8:670–673. doi: 10.1021/op0499526 CrossRefGoogle Scholar
  59. 59.
    Teramoto D, Yokoyama R, Kagawa H, Sada T, Ogata N (2010) A novel ionic liquid–polymer electrolyte for the advanced lithium-ion polymer battery. In: Gaune Escard M, Seddon KR (eds) Molten salts and ionic liquids: Never the Twain?, Wiley, New York, pp. 367–388. doi: 10.1002/9780470947777.ch23
  60. 60.
    G24 Innovations. Accessed 19 Sept 2012
  61. 61.
    Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302:792–793. doi: 10.1126/science.1090313 PubMedCrossRefGoogle Scholar
  62. 62.
    Ranke J, Stolte S, Störmann R, Arning J, Jastorff B (2007) Design of sustainable chemical products—the example of ionic liquids. Chem Rev 107:2183–2206. doi: 10.1002/chin.200736255 PubMedCrossRefGoogle Scholar
  63. 63.
    Earle MJ, Esperança JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834. doi: 10.1038/nature04451 PubMedCrossRefGoogle Scholar
  64. 64.
    Studzinska S, Buszewski B (2009) Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.). Anal Bioanal Chem 393:983–990. doi: 10.1007/s00216-008-2523-9 PubMedCrossRefGoogle Scholar
  65. 65.
    Volatile Organic Compounds (VOC) Emissions for Canada. Accessed 19 Sept 2012
  66. 66.
    TRI Explorer. Accessed 19 Sept 2012
  67. 67.
    Cammarata L, Kazarian SG, Salter PA, Welton T (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 23:5192–5200. doi: 10.1039/B106900D CrossRefGoogle Scholar
  68. 68.
    Zhao D, Liao Y, Zhang Z (2007) Toxicity of ionic liquids. Clean 35:42–48. doi: 10.1002/clen.200600015 Google Scholar
  69. 69.
    Wells AS, Coombe VT (2006) On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org Process Res Dev 10:794–798. doi: 10.1021/op060048i CrossRefGoogle Scholar
  70. 70.
    Kulacki KJ, Lamberti GA (2008) Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem 10:104–110. doi: 10.1039/B709289J CrossRefGoogle Scholar
  71. 71.
    Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24:87–92. doi: 10.1897/03-635.1 PubMedCrossRefGoogle Scholar
  72. 72.
    Koller G, Fischer U, Hungerbühler K (2000) Assessing safety, health, and environmental impact early during process development. Ind Eng Chem Res 39:960–972. doi: 10.1021/ie990669i CrossRefGoogle Scholar
  73. 73.
    Khan FI, Abbasi SA (1998) Techniques and methodologies for risk analysis in chemical process industry. J Loss Prev Process Ind 11:261–277. doi: 10.1016/S0950-4230(97)00051-X CrossRefGoogle Scholar
  74. 74.
    Environmental management—life cycle assessment—principles and framework (1997) EN ISO 14040. European Committee for Standardisation, BrusselsGoogle Scholar
  75. 75.
    Zhang Y, Bakshi BR, Demessie ES (2008) Life cycle assessment of an ionic liquid versus molecular solvents and their applications. Environ Sci Technol 42:1724–1730. doi: 10.1021/es0713983 PubMedCrossRefGoogle Scholar
  76. 76.
    Green Industrial Applications of ionic liquids, A NATO advanced research workshop (2010) Accessed 19 Sept 2012
  77. 77.
    Dechema (2007) BATIL (Biodegradability and toxicity of ionic liquids), Berlin, 6–9th May 2007. Accessed 19 Sept 2012
  78. 78.
    Ranke J, Jastorff B (2000) Multidimensional risk analysis of antifouling biocides. Environ Sci Pollut Res 7:105–114. doi: 10.1065/espr199910.003 CrossRefGoogle Scholar
  79. 79.
    Jastorff B, Störmann R, Ranke J, Mölter K, Stock F, Oberheitmann B, Hoffmann W, Hoffmann J, Nüchter M, Ondruschkae B, Filserb J (2003) How hazardous are ionic liquids? Structure–activity relationships and biological testing as important elements for sustainability evaluation. Green Chem 5:136–142. doi: 10.1039/B211971D CrossRefGoogle Scholar
  80. 80.
    Jessop PG (2011) Searching for green solvents. Green Chem 13:1391–1398. doi: 10.1039/C0GC00797H CrossRefGoogle Scholar
  81. 81.
    Hodges HC, Sterner JH (1956) Combined tabulation of toxicity classes. In: Spector WS (ed) Handbook of toxicilogy, W.B. Saunders Company, PhiladelphiaGoogle Scholar
  82. 82.
    Kelman D, Kashman Y, Rosenberg E, Ilan M, Ifrach I, Loya Y (2001) Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. Aquat Microb Ecol 24:9–16. doi: 10.3354/ame024009 CrossRefGoogle Scholar
  83. 83.
    Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189. doi: 10.1039/B419172B CrossRefGoogle Scholar
  84. 84.
    Matsumoto M, Mochiduki K, Fukunishi K, Kondo K (2004) Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Sep Purif Technol 40:97–101. doi: 10.1016/j.seppur.2004.01.009 CrossRefGoogle Scholar
  85. 85.
    Ganske F, Bornscheuer UT (2006) Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids [BMIM] [\(\text{ BF}_{4}\)] and [BMIM] [\(\text{ PF}_{6}\)] and organic solvents. Biotechnol Lett 28:465–469. doi:  10.1007/s10529-006-0006-7 PubMedCrossRefGoogle Scholar
  86. 86.
    Ma J-M, Cai L-L, Zhang B-J, Hu L-W, Li X-Y, Wang J-J (2010) Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae. Ecotoxicol Environ Saf 73:1465–1469. doi: 10.1016/j.ecoenv.2009.10.004 PubMedCrossRefGoogle Scholar
  87. 87.
    Chinese NEPA (1990) Algal growth inhibiting test. Guidelines for testing of chemicals (in Chinese). Chinese Chemical Industry Press, Beijing, pp 168–178Google Scholar
  88. 88.
    Pham TPT, Cho C-W, Min J, Yun Y-S (2008) Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata. J Biosci Bioeng 105:425–428. doi: 10.1263/jbb.105.425 PubMedCrossRefGoogle Scholar
  89. 89.
    Stolte S, Matzke M, Arning J, Böschen A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2007) Effects of different head groups and functionalized side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179. doi: 10.1039/B711119C Google Scholar
  90. 90.
    Larson JH, Frost PC, Lamberti GA (2008) Variable toxicity of ionic liquid-forming chemicals to Lemna minor and the influence of dissolved organic matter. Environ Toxicol Chem 27:676–681. doi: 10.1897/06-540.1 PubMedCrossRefGoogle Scholar
  91. 91.
    Matzke M, Stolte S, Arning J, Uebers U, Filser J (2009) Ionic liquids in soils: effects of different anion species of imidazolium based ionic liquids on wheat (Triticum aestivum) as affected by different clay minerals and clay concentrations. Ecotoxicology 18:197–203. doi: 10.1007/s10646-008-0272-3 PubMedCrossRefGoogle Scholar
  92. 92.
    Balczewski P, Bachowska B, Bialas T, Biczak R, Wieczorek WM, Balińska A (2007) Synthesis and phytotoxicity of new ionic liquids incorporating chiral cations and/or chiral anions. J Agric Food Chem 55:1881–1892. doi: 10.1021/jf062849q PubMedCrossRefGoogle Scholar
  93. 93.
    Studzińska S, Buszewski B (2009) Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.). Anal Bioanal Chem 393:983–990. doi: 10.1007/s00216-008-2523-9 PubMedCrossRefGoogle Scholar
  94. 94.
    McQueen DJ, Post JR, Mills EL (1986) Trophic relationships in freshwater pelagic ecosystems. Can J Fish Aqua Sci 43:1571–1581. doi: 10.1139/f86-195 CrossRefGoogle Scholar
  95. 95.
    Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids: part II. Effect of the anion and toxicology. Green Chem 7:9–14. doi: 10.1039/B411922C CrossRefGoogle Scholar
  96. 96.
    Luo Y-R, Li X-Y, Chen X-X, Zhang B-J, Sun Z-J, Wang J-J (2008) The developmental toxicity of 1-butyl-3-octylimidazolium bromide on Daphnia magna. Environ Toxicol 23:736–744. doi: 10.1002/tox.20382 PubMedCrossRefGoogle Scholar
  97. 97.
    Yu M, Wang S-H, Luo Y-R, Han Y-W, Li X-Y, Zhang B-J, Wang J-J (2009) Effects of the1-alkyl-3-methylimidazolium bromide ionic liquids on the antioxidant defense system of Daphnia magna. Ecotoxicol Environ Saf 72:1798–1804. doi: 10.1016/j.ecoenv.2009.05.002 PubMedCrossRefGoogle Scholar
  98. 98.
    Bernot RJ, Kennedy EE, Lamberti GA (2005) Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environ Toxicol Chem 24:1759–1765. doi: 10.1897/04-614R.1 PubMedCrossRefGoogle Scholar
  99. 99.
    Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermann U, Jastorff B (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9:1198–1207. doi: 10.1039/B705795D Google Scholar
  100. 100.
    Swatloski RP, Holbrey JD, Memon SB, Caldwell GA, Caldwell KA, Rogers RD (2004) Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids. Chem Commun 668–669: doi: 10.1039/B316491H
  101. 101.
    Costello DM, Brown LM, Lamberti GA (2009) Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) surviving and feeding. Green Chem 11:548–553. doi: 10.1039/B822347E CrossRefGoogle Scholar
  102. 102.
    Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, Intorre L (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8:238–240. doi: 10.1039/B511554J Google Scholar
  103. 103.
    Mann RM, Bidwell JR (2000) Application of the FETAX protocol to assess the development toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs. Aquat Toxicol 1:19–29. doi: 10.1016/S0166-445X(00)00106-5 CrossRefGoogle Scholar
  104. 104.
    Li X-Y, Zhou J, Yu M, Wang J-J, Pei YC (2009) Toxic effects of 1-methyl-3-octylimidazolium bromide on the early embryonic development of the frog Rana nigromaculata. Ecotoxicol Environ Saf 72:552–556. doi: 10.1016/j.ecoenv.2007.11.002 PubMedCrossRefGoogle Scholar
  105. 105.
    Pernak J, Czepukowicz A (2001) New ionic liquids and their antielectrostatic properties. Ind Eng Chem Res 40:2379–2383. doi: 10.1021/ie000689g CrossRefGoogle Scholar
  106. 106.
    Bailey MM, Townsend MB, Jernigan PL, Sturdivant J, Hough-Troutman WL, Rasco JF, Swatloski RP, Rogers RD, Hood RD (2008) Developmental toxicity assessment of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1 mice. Green Chem 10:1213–1217. doi: 10.1039/B807019A CrossRefGoogle Scholar
  107. 107.
    Landry TD, Brooks K, Poche D, Woolhiser M (2005) Acute toxicity profile of 1-butyl-3-methylimidazolium chloride. Bull Environ Contam Toxicol 74:559–565. doi: 1007/s00128-005-0620-4 PubMedCrossRefGoogle Scholar
  108. 108.
    Stock F, Hoffmann J, Ranke J, Störmann R, Ondruschka B, Jastorff B (2004) Effects of ionic liquids on the acetylcholinesterase—a structure–activity relationship consideration. Green Chem 6:286–290. doi: 10.1039/B402348J Google Scholar
  109. 109.
    Arning J, Stolte S, Böschen A, Stock F, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2008) Qualitative and quantitative structure–activity relationships for the inhibitory effects of cationic head groups, functionalized side chains and anions of ionic liquids on acetylcholinesterase. Green Chem 10:47–58. doi: 10.1039/B712109A CrossRefGoogle Scholar
  110. 110.
    Skladanowski AC, Stepnowski P, Kleszczyński K, Dmochowska B (2005) AMP deaminase in vitro inhibition by xenobiotics. A potential molecular method for risk assessment of synthetic nitro- and polycyclic musks, imidazolium ionic liquids and \(N\)-glucopyranosyl ammonium salts. Environ Toxicol Phar 19:291–296. doi: 10.1016/j.etap.2004.08.005 Google Scholar
  111. 111.
    Yu M, Li S-M, Li X-Y, Zhang B-J, Wang J-J (2009) Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver. Ecotoxicol Environ Saf 71:903–906. doi: 10.1016/j.ecoenv.2008.02.022 CrossRefGoogle Scholar
  112. 112.
    Kumar RA, Papaïconomou N, Lee JM, Salminen J, Clark DS, Prausnitz JM (2009) In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions. Environ Toxicol 24:388–395. doi: 10.1002/tox.20443 PubMedCrossRefGoogle Scholar
  113. 113.
    Frade RFM, Matias A, Branco LC, Afonso CAM, Duarte CMM (2007) Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chem 9:873–877. doi: 10.1039/B617526K CrossRefGoogle Scholar
  114. 114.
    Stepnowski P, Skladanowski AC, Ludwiczak A, Laczyńska E (2004) Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Hum Exp Toxicol 23:513–517. doi: 10.1191/0960327104ht480oa PubMedCrossRefGoogle Scholar
  115. 115.
    Wang X, Ohlin CA, Lu Q, Fei Z, Hu J, Dyson PJ (2007) Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa. Green Chem 9:1191–1197. doi: 10.1039/B704503D CrossRefGoogle Scholar
  116. 116.
    Cros (1863) Action de l’alcohol amylique sur l’organisme. The Faculty of Medicine, University of Strasbourg, StrasbourgGoogle Scholar
  117. 117.
    Crum-Brown A, Fraser TR (1868) On the connection between chemical constitution and physiological action. Part I. On the physiological action of the salts of the ammonium bases, derived from strychnine, brucia, thebaia, codeia, morphia, and nicotia. J Anat Physiol 2:224–242. Accessed 19 Sept 2012
  118. 118.
    Hansch C, Fujita T (1964) p–\(\sigma -\pi \) Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626. doi:  10.1021/ja01062a035 CrossRefGoogle Scholar
  119. 119.
    Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London. Accessed 19 Sept 2012
  120. 120.
    Zuang V, Hartung T (2005) Making validated alternatives available—the strategies and work of the European Centre for the validation of alternative methods (ECVAM). Altern Anim Test Exp 11:15–26. Accessed 19 Sept 2012
  121. 121.
    International Guiding Principles for Biomedical Research Involving Animals (1985) Council for international organizations of medical sciences (CIOMS). Accessed 19 Sept 2012
  122. 122.
    SRU (Der Rat von Sachverständigen für Umweltfragen) (2005) Die Registrierung von Chemikalien unter dem REACHRegime-Prioritätensetzung und Untersuchungstiefe. . Accessed 19 Sept 2012
  123. 123.
    Auer CM, Nabholz JV, Baetcke KP (1990) Mode of action and the assessment of chemical hazards in the presence of limited data: use of structure–activity relationships (SAR) under TSCA, Section 5. Environ Health Perspect 87:183–197. Accessed 19 Sept 2012
  124. 124.
    El-Masri HA, Mumtaz MM, Choudhary G, Cibulas W, De Rosa CT (2002) Application of computational toxicology methods at the agency for toxic substances and disease registry. Int J Hyg Environ Health 205:63–69. . Accessed 19 Sept 2012
  125. 125.
    OECD environment health and safety publications series on testing and assessment No. 69 (2007) Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. Accessed 19 Sept 2012
  126. 126.
    Ren Y, Qin J, Liu H, Yao X, Liu M (2009) QSPR study on the melting points of a diverse set of potential ionic liquids by projection pursuit regression. QSAR Comb Sci 28:1237–1244. doi: 10.1002/qsar.200710073 CrossRefGoogle Scholar
  127. 127.
    Bini R, Chiappe C, Duce C, Micheli A, Solaro R, Starita A, Tiné MR (2008) Ionic liquids: prediction of their melting points by a recursive neural network model. Green Chem 10:306–309. doi: 10.1039/b708123e Google Scholar
  128. 128.
    Varnek A, Kireeva N, Tetko IV, Baskin II, Solov’ev VP (2007) Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points? J Chem Inf Model 47:1111–1122. doi: 10.1021/ci600493x PubMedCrossRefGoogle Scholar
  129. 129.
    Sun N, He X, Dong K, Zhang X, Lu X, He H, Zhang S (2006) Prediction of the melting points for two kinds of room temperature ionic liquids. Fluid Phase Equilib 246:137–142. doi: 10.1016/j.fluid.2006.05.013 CrossRefGoogle Scholar
  130. 130.
    Trohalaki S, Pachter R, Drake GW, Hawkins T (2005) Quantitative structure–property relationships for melting points and densities of ionic liquids. Energy Fuels 19:279–284. doi: 10.1021/ef049858q CrossRefGoogle Scholar
  131. 131.
    Trohalaki S, Pachter R (2005) Prediction of melting points for ionic liquids. QSAR Comb Sci 24:485–490. doi: 10.1002/qsar.200430927 CrossRefGoogle Scholar
  132. 132.
    Eike DM, Brennecke JF, Maginn EJ (2003) Predicting melting points of quaternary ammonium ionic liquids. Green Chem 5:323–328. doi: 10.1039/B301217D CrossRefGoogle Scholar
  133. 133.
    Katritzky AR, Lomaka A, Petrukhin R, Jain R, Karelson M, Visser AE, Rogers RD (2002) QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids. J Chem Inf Comput Sci 42:71–74. doi: 10.1021/ci0100503 PubMedCrossRefGoogle Scholar
  134. 134.
    Carrera GVSM, Branco LC, Aires-de-Sousa J, Afonso CAM (2008) Exploration of quantitative structure–property relationships (QSPR) for the design of new guanidinium ionic liquids. Tetrahedron 64:2216–2224. doi: 10.1016/j.tet.2007.12.021 Google Scholar
  135. 135.
    Fatemi MH, Izadian P (2012) In silico prediction of melting points of ionic liquids by using multilayer perceptron neural networks. J Theor Comput Chem 11:127–141. doi: 10.1142/S0219633612500083 CrossRefGoogle Scholar
  136. 136.
    Zhang S, Sun N, He X, Lu X, Zhang X (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475–1517. doi: 10.1063/1.2204959 CrossRefGoogle Scholar
  137. 137.
    Lazzús JA (2009) \(\rho \)(T, p) model for ionic liquids based on quantitative structure–property relationship calculations. J Phys Org Chem 22:1193–1197. doi:  10.1002/poc.1576 CrossRefGoogle Scholar
  138. 138.
    Lazzús JA (2009) \(\rho \)-T-P prediction for ionic liquids using neural networks. J Taiwan Inst Chem Eng 40:213–232. doi:  10.1016/j.jtice.2008.08.001 CrossRefGoogle Scholar
  139. 139.
    Gardas RL, Coutinho JAP (2008) Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilib 265:57–65. doi: 10.1016/j.fluid.2008.01.002 CrossRefGoogle Scholar
  140. 140.
    Carvalho PJ, Neves CMSS, Coutinho JAP (2010) Surface tensions of bis(trifluoromethylsulfonyl)imide anion-based ionic liquids. J Chem Eng Data 55:3807–3812. doi: 10.1021/je100253m Google Scholar
  141. 141.
    Gardas RL, Rooney DW, Hardacre C (2009) Development of a QSPR correlation for the parachor of 1,3-dialkyl imidazolium based ionic liquids. Fluid Phase Equilib 283:31–37. doi: 10.1016/j.fluid.2009.05.008 CrossRefGoogle Scholar
  142. 142.
    Součková M, Klomfar J, Pátek J (2012) Temperature dependence of the surface tension and 0.1 MPa density for 1-C\(_{n}\)-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate with \(n = 2, 4\), and 6. J Chem Thermodyn 48:267–275. doi:  0.1016/j.jct.2011.12.033 CrossRefGoogle Scholar
  143. 143.
    Mirkhani SA, Gharagheizi F (2012) Predictive quantitative structure–property relationship model for the estimation of ionic liquid viscosity. Ind Eng Chem Res 51:2470–2477. doi: 10.1021/ie2025823 Google Scholar
  144. 144.
    Yu G, Zhao D, Wen L, Yang S, Chen X (2012) Viscosity of ionic liquids: database, observation, and quantitative structure–property relationship analysis. AIChE J 58:2885–2899. doi: 10.1002/aic.12786 CrossRefGoogle Scholar
  145. 145.
    Han C, Yu G, Wen L, Zhao D, Asumana C, Chen X (2011) Data and QSPR study for viscosity of imidazolium-based ionic liquids. Fluid Phase Equilib 300:95–104. doi: 10.1016/j.fluid.2010.10.021 CrossRefGoogle Scholar
  146. 146.
    Billard I, Marcou G, Ouadi A, Varnek A (2011) In silico design of new ionic liquids based on quantitative structure–property relationship models of ionic liquid viscosity. J Phys Chem B 115:93–98. doi: 10.1021/jp107868w PubMedCrossRefGoogle Scholar
  147. 147.
    Bini R, Malvaldi M, Pitner WR, Chiappe C (2008) QSPR correlation for conductivities and viscosities of low-temperature melting ionic liquids. J Phys Org Chem 21:622–629. doi: 10.1002/poc.1337 CrossRefGoogle Scholar
  148. 148.
    Matsuda H, Yamamoto H, Kurihara K, Tochigi K (2007) Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities and viscosities. Fluid Phase Equilib 261:434–443. doi: 10.1016/j.fluid.2007.07.018 CrossRefGoogle Scholar
  149. 149.
    Tochigi K, Yamamoto H (2007) Estimation of ionic conductivity and viscosity of ionic liquids using a QSPR model. J Phys Chem C 111:15989–15994. doi: 10.1021/jp073839a CrossRefGoogle Scholar
  150. 150.
    Eike DM, Brennecke JF, Maginn EJ (2004) Predicting infinite-dilution activity coefficients of organic solutes in ionic liquids. Ind Eng Chem Res 43:1039–1048. doi: 10.1021/ie034152p CrossRefGoogle Scholar
  151. 151.
    Xi L, Sun H, Li J, Liu H, Yao X, Gramatica P (2010) Prediction of infinite-dilution activity coefficients of organic solutes in ionic liquids using temperature-dependent quantitative structure–property relationship method. Chem Eng J 163:195–201. doi: 10.1016/j.cej.2010.07.023 CrossRefGoogle Scholar
  152. 152.
    Ge M, Li C, Ma J (2009) QSPR analysis for infinite dilution activity coefficients of organic solutes in ionic liquids. Electrochemistry 77:745–747. doi: 10.5796/electrochemistry.77.745 CrossRefGoogle Scholar
  153. 153.
    Tämm K, Burk P (2006) QSPR analysis for infinite dilution activity coefficients of organic compounds. J Mol Model 12:417–421. doi: 10.1007/s00894-005-0062-2 PubMedCrossRefGoogle Scholar
  154. 154.
    Zhu J, Yu Y, Chen J, Fei W (2006) QSPR of activity coefficients at infinite dilution and interfacial tension for organic solutes in room temperature ionic liquids. J Chem Ind Eng 57: 1835–1840. Accessed 19 Sept 2012Google Scholar
  155. 155.
    Freire MG, Neves CMSS, Ventura SP, Pratas MJ, Marrucho IM, Oliveira J, Coutinho JAP, Fernandes AM (2010) Solubility of non-aromatic ionic liquids in water and correlation using a QSPR approach. Fluid Phase Equilib 294:234–240. doi: 10.1016/j.fluid.2009.12.035 CrossRefGoogle Scholar
  156. 156.
    Járvás G, Quellet C, Dallos A (2011) Estimation of Hansen solubility parameters using multivariate nonlinear QSPR modeling with COSMO screening charge density moments. Fluid Phase Equilib 309:8–14. doi: 10.1016/j.fluid.2011.06.030 CrossRefGoogle Scholar
  157. 157.
    Katritzky AR, Kuanar M, Stoyanova-Slavova IB, Slavov SH, Dobchev DA, Karelson M, Acree WE Jr (2008) Quantitative structure–property relationship studies on Ostwald solubility and partition coefficients of organic solutes in ionic liquids. J Chem Eng Data 53:1085–1092. doi: 10.1021/je700607b CrossRefGoogle Scholar
  158. 158.
    Pan S-F, Hu G-X, Lü Y, Zou J-W, Yu Q-S (2010) QSPR model analysis on the solubility of organic compounds in ionic liquids. Acta Phys Chim Sin 26:2494–2502. doi: 10.3866/PKU.WHXB20100902 Google Scholar
  159. 159.
    Holbrey JD, López-Martin I, Rothenberg G, Seddon KR, Silvero G, Zheng X (2008) Desulfurisation of oils using ionic liquids: selection of cationic and anionic components to enhance extraction efficiency. Green Chem 10:87–92. doi: 10.1039/B710651C CrossRefGoogle Scholar
  160. 160.
    Palomar J, Torrecilla JS, Lemus J, Ferro VR, Rodríguez F (2010) A COSMO-RS based guide to analyze/quantify the polarity of ionic liquids and their mixtures with organic cosolvents. Phys Chem Chem Phys 12:1991–2000. doi: 10.1039/B920651P PubMedCrossRefGoogle Scholar
  161. 161.
    Yan F, Xia S, Wang Q, Ma P (2012) Predicting the decomposition temperature of ionic liquids by the quantitative structure–property relationship method using a new topological index. J Chem Eng Data 57:805–810. doi: 10.1021/je201023a CrossRefGoogle Scholar
  162. 162.
    Bai L, Zhu J, Chen B (2011) Quantitative structure–property relationship study on heat of fusion for ionic liquids. Fluid Phase Equilib 312:7–13. doi: 10.1016/j.fluid.2011.09.005 CrossRefGoogle Scholar
  163. 163.
    Zhu J, Bai L, Chen B, Fei W (2009) Thermodynamical properties of phase change materials based on ionic liquids. Chem Eng J 147:58–62. doi: 10.1016/j.cej.2008.11.016 CrossRefGoogle Scholar
  164. 164.
    Mousavisafavi SM, Mirkhani SA, Gharagheizi F, Akbari J (2012) A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids—part 1. The linear approach. J Therm Anal Calorim. doi: 10.1007/s10973-012-2207-8
  165. 165.
    Mousavisafavi SM, Gharagheizi F, Mirkhani SA, Akbari J (2012) A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids—part 2. The nonlinear approach. J Therm Anal Calorim. doi: 10.1007/s10973-012-2207-8
  166. 166.
    Bertinetto C, Duce C, Micheli A, Solaro R, Starita A, Tiné MR (2009) Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks. J Mol Graphics Modell 27:797–802. doi: 10.1016/j.jmgm.2008.12.001 CrossRefGoogle Scholar
  167. 167.
    Gardas RL, Ge R, Goodrich P, Hardacre C, Hussain A, Rooney DW (2010) Thermophysical properties of amino acid-based ionic liquids. J Chem Eng Data 55:1505–1515. doi: 10.1021/je900660x CrossRefGoogle Scholar
  168. 168.
    Luis P, Ortiz I, Aldaco R, Irabien A (2007) A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri \(\text{ EC}_{50})\) of ionic liquids. Ecotoxicol Environ Saf 67:423–429. doi:  10.1016/j.ecoenv.2006.06.010 PubMedCrossRefGoogle Scholar
  169. 169.
    Irabien A, Garea A, Luis P (2009) Hybrid molecular QSAR model for toxicity estimation: application to ionic liquids. Comput Aided Chem Eng 26:63–67. doi: 10.1016/S1570-7946(09)70011-2 CrossRefGoogle Scholar
  170. 170.
    Luis P, Garea A, Irabien A (2010) Quantitative structure–activity relationships (QSARs) to estimate ionic liquids ecotoxicity \(\text{ EC}_{50}\) (Vibrio fischeri). J Mol Liq 152:28–33. doi:  10.1016/j.molliq.2009.12.008 CrossRefGoogle Scholar
  171. 171.
    Alvarez-Guerra M, Luis P, Irabien A (2011) Group contribution model for ecotoxicity estimation of ionic liquids. Afinidad 68:20–24Google Scholar
  172. 172.
    Bruzzone S, Chiappe C, Focardi SE, Pretti C, Renzi M (2011) Theoretical descriptor for the correlation of aquatic toxicity of ionic liquids by quantitative structure–toxicity relationships. Chem Eng J 175:17–23. doi: 10.1016/j.cej.2011.08.073 CrossRefGoogle Scholar
  173. 173.
    Alvarez-Guerra M, Irabien A (2011) Design of ionic liquids: an ecotoxicity (Vibrio fischeri) discrimination approach. Green Chem 13:1507–1516. doi: 10.1039/C0GC00921K CrossRefGoogle Scholar
  174. 174.
    Das RN, Roy K (2012) Development of classification and regression models for Vibrio fischeri toxicity of ionic liquids: green solvents for the future. Toxicol Res 1:186–195. doi: 10.1039/c2tx20020a Google Scholar
  175. 175.
    Viboud S, Papaiconomou N, Cortesia A, Chatel G (2012) Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: a systematic study. J Hazard Mater 215–216:40–48. doi: 10.1016/j.jhazmat.2012.02.019 PubMedCrossRefGoogle Scholar
  176. 176.
    Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem 8:82–90. doi: 10.1039/B511333D CrossRefGoogle Scholar
  177. 177.
    Ismail Hossain M, Samir BB, El-Harbawi M, Masri AN, Hefter G, Yin C-Y (2011) Development of a novel mathematical model using a group contribution method for prediction of ionic liquid toxicities. Chemosphere 85:990–994. doi: 10.1016/j.chemosphere.2011.06.088 PubMedCrossRefGoogle Scholar
  178. 178.
    Torrecilla JS, Jb Palomar, Jb Lemus, Rodríguez F (2010) A quantum-chemical-based guide to analyze/quantify the cytotoxicity of ionic liquids. Green Chem 12:123–134. doi: 10.1039/B919806G CrossRefGoogle Scholar
  179. 179.
    Fatemi MH, Izadiyan P (2011) Cytotoxicity estimation of ionic liquids based on their effective structural features. Chemosphere 84:553–563. doi: 10.1016/j.chemosphere.2011.04.021 PubMedCrossRefGoogle Scholar
  180. 180.
    García-Lorenzo A, Tojo E, Tojo J, Teijeira M, Rodríguez-Berrocal FJ, González MP, Martínez-Zorzano VS (2008) Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study. Green Chem 10:508–516. doi: 10.1039/B718860A CrossRefGoogle Scholar
  181. 181.
    França JMP, de Castro CAN, Lopes MM, Nunes VMB (2009) Influence of thermophysical properties of ionic liquids in chemical process design. J Chem Eng Data 54:2569–2575. doi: 10.1021/je900107t CrossRefGoogle Scholar
  182. 182.
    Ha SH, Menchavez RN, Koo Y-M (2010) Reprocessing of spent nuclear waste using ionic liquids. Korean J Chem Eng 27:1360–1365. doi: 10.1007/s11814-010-0386-1 CrossRefGoogle Scholar
  183. 183.
    Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, WeinheimCrossRefGoogle Scholar
  184. 184.
    Patrascu C, GauffreF Nallet F (2006) Micelles in ionic liquids: aggregation behavior of alkyl poly(ethyleneglycol)-ethers in 1-butyl-3-methyl-imidazolium type ionic liquids. Chemphyschem 7:99–101. doi: 10.1002/cphc.200500419 PubMedCrossRefGoogle Scholar
  185. 185.
    Kimizuka N, Nakashima T (2001) Spontaneous self-assembly of glycolipid bilayer membranes in sugarphilic ionic liquids and formation of ionogels. Langmuir 17:6759–6761. doi: 10.1021/la015523e CrossRefGoogle Scholar
  186. 186.
    Gao HX, Li JC, Han BX, Chen WN, Zhang JL, Zhang R, Yan DD (2004) Microemulsions with ionic liquid polar domains. Phys Chem Chem Phys 6:2914–2916. doi: 10.1039/b402977a CrossRefGoogle Scholar
  187. 187.
    Araos MU, Warr GG (2005) Self-assembly of nonionic surfactants into lyotropic liquid crystals in ethylammonium nitrate, a room-temperature ionic liquid. J Phys Chem B 109:14275–14277. doi: 10.1021/jp052862y PubMedCrossRefGoogle Scholar
  188. 188.
    Amajjahe S, Choi S, Munteanu M, Ritter H (2008) Pseudopolyanions based on poly(NIPAAM-co-\(\beta \)-cyclodextrin methacrylate) and ionic liquids. Angew Chem-Int Edit 47:3435–3437. doi:  10.1002/anie.200704995 CrossRefGoogle Scholar
  189. 189.
    Montes-Navajas P, Corma A, Garcia H (2008) Supramolecular ionic liquids based on host–guest cucurbituril imidazolium complexes. J Mol Catal A Chem 279:165–169. doi: 10.1016/j.molcata.2007.08.007 CrossRefGoogle Scholar
  190. 190.
    Inazumi N, Yamamoto S, Sueishi Y (2007) A characteristic effect of pressure on inclusion complexation of phenothiazine dyes with \(p\)-sulfonatocalix[6]arene in a room-temperature ionic liquid. J Incl Phenom Macrocycl Chem 59:33–39. doi:  10.1007/s10847-007-9291-6 CrossRefGoogle Scholar
  191. 191.
    Miskolczy Z, Sebok-Nagy K, Biczok L, Gokturk S (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400:296–300. doi: 10.1016/j.cplett.2004.10.127 Google Scholar
  192. 192.
    Zhang GD, Chen XA, Xie YZ, Zhao YR, Qiu HY (2007) Lyotropic liquid crystalline phases in a ternary system of 1-hexadecyl-3-methylimidazolium chloride/1-decanol/water. J Colloid Interface Sci 315:601–606. doi: 10.1016/j.jcis.2007.07.012 PubMedCrossRefGoogle Scholar
  193. 193.
    Moniruzzaman M, Tahara Y, Tamura M, Kamiya N, Goto M (2010) Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem Commun 46:1452–1454. doi: 10.1039/B907462G CrossRefGoogle Scholar
  194. 194.
    Candeias NR, Branco LC, Gois PMP, Afonso CAM, Trindade AF (2009) More sustainable approaches for the synthesis of \(N\)-based heterocycles. Chem Rev 109:2703–2802. doi:  10.1021/cr800462w PubMedCrossRefGoogle Scholar
  195. 195.
    Gu Y, Li G (2009) Ionic liquids-based catalysis with solids: state of the art. Adv Synth Catal 351:817–847. doi: 10.1002/adsc.200900043 CrossRefGoogle Scholar
  196. 196.
    Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53. doi: 10.1007/s12257-009-3079-z CrossRefGoogle Scholar
  197. 197.
    A guide to the globally harmonized system of classification and labeling of chemicals (GHS). Accessed 19 Sept 2012
  198. 198.
    Li X, Zhao J, Li Q, Wang L, Tsang SC (2007) Ultrasonic chemical oxidative degradations of 1,3-dialkylimidazolium ionic liquids and their mechanistic elucidations. Dalton Trans 1875–1880: doi: 10.1039/B618384K
  199. 199.
    Siedlecka EM, Stepnowski P (2009) The effect of alkyl chain length on the degradation of alkylimidazolium- and pyridinium-type ionic liquids in a Fenton-like system. Environ Sci Pollut Res 16:453–458. doi: 10.1007/s11356-008-0058-4 CrossRefGoogle Scholar
  200. 200.
    Awad WH, Gilman JW, Nyden M, Harris RH, Sutto TE, Callahan J, Trulove PC, DeLong HC, Fox DM (2004) Thermal degradation studies of alkyl-imidazoliumsalts and their application in nanocomposites. Thermochim Acta 409:3–11. doi: 10.1016/S0040-6031(03)00334-4 CrossRefGoogle Scholar
  201. 201.
    Morawski AW, Janus M, Goc-Maciejewska I, Syguda A, Pernak J (2005) Decomposition of ionic liquids by photocatalysis. Pol J Chem 79:1929–1935Google Scholar
  202. 202.
    Kumar S, Ruth W, Sprenger B, Kragl U (2006) On the biodegradation of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Chim Oggi 24:24–26Google Scholar
  203. 203.
    Stepnowski P, Zaleska A (2005) Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids. J Photochem Photobiol A 170: 45–50Google Scholar
  204. 204.
    Beaulieu JJ, Tank JL, Kopacz M (2008) Sorption of imidazolium based ionic liquids to aquatic sediments. Chemosphere 70:1320–1328. doi: 10.1016/j.chemosphere.2007.07.046 PubMedCrossRefGoogle Scholar
  205. 205.
    Latała A, Nȩdzia M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12:60–64. doi: 10.1039/B918355H CrossRefGoogle Scholar
  206. 206.
    Seddon KR, Stark A, Torres M-J (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287. doi: 10.1351/pac200072122275 CrossRefGoogle Scholar
  207. 207.
    Holbrey JD, Seddon KR, Wareing R (2001) A simple colorimetric method for the quality control of 1-alkyl-3-methylimidazolium ionic liquid precursors. Green Chem 3:33–36. doi: 10.1039/B009459P CrossRefGoogle Scholar
  208. 208.
    Pham TPT, Cho C-W, Vijayaraghavan K, Min J, Yun Y-S (2008) Effect of imidazolium-based ionic liquids on the photosynthetic activity and growth rate of Selenastrum capricornutum. Environ Toxicol Chem 27:1583–1589. doi: 10.1897/07-415.1 PubMedCrossRefGoogle Scholar
  209. 209.
    Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934. doi: 10.1039/B617536H CrossRefGoogle Scholar
  210. 210.
    Gabriel S, Weiner J (1888) Ueber einige abkömmlinge des propylamins. Ber Dtsch Chem Ges 21:2669–2679CrossRefGoogle Scholar
  211. 211.
    Ray PC, Rakshit JN (1911) Nitrites of the alkylammonium bases : ethylammonium nitrite, dimethylammonium nitrite, and trirnethylammonium nitrite. J Chem Soc 99:1470–1475CrossRefGoogle Scholar
  212. 212.
    Sugden S, Wilkins H (1929) CLXVII—the parachor and chemical constitution. Part XII. Fused metals and salts. J Chem Soc 98:1291–1298Google Scholar
  213. 213.
    Graenacher C (1934) Cellulose solution, US Pat. 1943176Google Scholar
  214. 214.
    Mathes RA, Stewart FD, Swedish F Jr (1948) A synthesis of amine salts of thiocyanic acid. J Am Chem Soc 70:3455–3455PubMedCrossRefGoogle Scholar
  215. 215.
    Hurley FH (1948) Electrodeposition of aluminum. US Pat. 4 446 331Google Scholar
  216. 216.
    Hurley FH, Wier TP Jr (1951) The electrodeposition of aluminum from nonaqueous solutions at room temperature. J Electrochem Soc 98:207–212CrossRefGoogle Scholar
  217. 217.
    Ford WT, Hauri RJ, Smith SG (1974) Nucleophilic reactivities of halide ions in molten triethyl-n-hexylammonium triethyl-n-hexylboride. J Am Chem Soc 96:4316–4318CrossRefGoogle Scholar
  218. 218.
    Chum HL, Koch VR, Miller LL, Osteryoung RA (1975) An electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J Am Chem Soc 97:3264–3265CrossRefGoogle Scholar
  219. 219.
    Gale RJ, Gilbert B, Osteryoung RA (1978) Raman spectra of molten aluminum chloride: 1-butylpyridinium chloride systems at ambient temperatures. Inorg Chem 17:2728–2729CrossRefGoogle Scholar
  220. 220.
    Nardi JC, Hussey CL, King LA (1978) US Pat. 4 122 245Google Scholar
  221. 221.
    Robinson J, Osteryoung RA (1979) An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. J Am Chem Soc 101:323–327CrossRefGoogle Scholar
  222. 222.
    Wilkes JS, Hussey CL (1982) Selection of cations for ambient temperature chloroaluminate molten salts using MNDO molecular orbital calculations. Frank J. Seiler Research Laboratory Technical, Report, FJSRLTR-82-0002Google Scholar
  223. 223.
    Scheffler TB, Hussey CL, Seddon KR, Kear CM, Armitage PD (1983) Molybdenum chloro complexes in room temperature chloroaluminate ionic liquids: stabilization of hexachloromolybdate (2-) and hexachloromolybdate (3-). Inorg Chem 22:2099–2100CrossRefGoogle Scholar
  224. 224.
    Poole CF, Kersten BR, Ho SSJ, Coddens ME, Furton KG (1986) Organic salts, liquid at room temperature, as mobile phases in liquid chromatography. J Chromatogr 352:407–425Google Scholar
  225. 225.
    Shetty PH, Youngberg PJ, Kersten BR, Poole CF (1987) Solvent properties of liquid organic salts used as mobile phases in microcolumn reversed-phase liquid chromatography. J Chromatogr 411:61–79CrossRefGoogle Scholar
  226. 226.
    Cooper EI, O’Sullivan EJM (1992) Proceedings of the eighth international symposium on molten salts. Proc Electrochem Soc 92–16:386–396Google Scholar
  227. 227.
    Abdul-Sada AK, Seddon KR, Stewart NJ (1995a) Ionic liquids of ternary melts. World Pat. WO 95 21872Google Scholar
  228. 228.
    Abdul-Sada AK, Atkins MP, Ellis B, Hodgson PKG, Morgan MLM, Seddon KR (1995b) Process and catalysts for the alkylation of aromatic hydrocarbons. World Pat. WO 95 21806Google Scholar
  229. 229.
    Fields M, Hutson GV, Seddon KR, Gordon CM (1998) Ionic liquids as solvents. World Pat. WO 98 06106Google Scholar
  230. 230.
    Munson CL, Boudreau LC, Driver MS, Schinski WL (2002) Separation of olefins from paraffins using ionic liquid solutions. US Pat. 6 339 182 Google Scholar
  231. 231.
    Hoff A, Jost C, Prodi-Schwab A, Schmidt FG, Weyershausen B (2004) Ionic liquids: new designer compounds for more efficient chemistry. Elem: Degussa Sci Newslett 9:10–15Google Scholar
  232. 232.
    Phillips GW, Falling SN, Godleski SA, Monnier JR (1994) Continuous process for the manufacture of 2,5-dihydrofurans from \({\gamma }, {\delta }\)-epoxybutenes. US Pat. 5 315 019Google Scholar
  233. 233.
    Saleh RY (2000) Preparation of aromatic aldehydes from alkylaromatics and carbon monoxide in the presence of acidic ionic liquids. World Pat. WO 00 15594Google Scholar
  234. 234.
    Kömpf M (2006) Mobility under high pressure. Linde Technology Report 24–26Google Scholar
  235. 235.
    Liu Z, Xu C, Huang C (2004) Method for manufacturing alkylate oil with composite ionic liquid used as catalyst. US Pat. 0 133 056Google Scholar
  236. 236.
    Green MJ (2004) Ionic liquids: a road-map to commercialisation. Royal Society of Chemistry, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical TechnologyJadavpur University KolkataIndia

Personalised recommendations