Molecular Diversity

, Volume 16, Issue 3, pp 477–487 | Cite as

Focused enumeration and assessing the structural diversity of scaffold libraries: conformationally restricted bicyclic secondary diamines

  • Oleksandr O. Grygorenko
  • Roman Prytulyak
  • Dmitriy M. Volochnyuk
  • Volodymyr Kudrya
  • Oleksiy V. Khavryuchenko
  • Igor V. KomarovEmail author
Full-Length Paper


Comprehensive enumeration of conformationally restricted bicyclic secondary diamines (CRDA) was performed within defined structural limits, yielding a library of all theoretically possible compounds of this class, potentially useful as building blocks for drug design. In order to assess structural diversity of the generated library, molecular geometries of the library members were optimized using DFT calculations. It was shown that the distance between the amino groups and their relative orientation in space vary widely over the whole library, which might be beneficial for diversity-oriented conformational restriction approach in drug discovery. There are many representatives of “three-dimensional” scaffolds in the CRDA library. Selected literature data on biological activity of the known CRDA derivatives were discussed, demonstrating utility of the CRDA scaffold hopping in drug design.


Drug design Chemical space Scaffold hopping Bicyclic diamines Molecular rigidity Three-dimensional scaffolds Diversity-oriented conformational restriction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11030_2012_9381_MOESM1_ESM.pdf (548 kb)
ESM 1 (PDF 548 kb)


  1. 1.
    Dobson CM (2004) Chemical space and biology. Nature 432: 824. doi: 0.1038/nature03192 PubMedCrossRefGoogle Scholar
  2. 2.
    Lederberg W (1965) Topological mapping of organic molecules. Proc Natl Acad Sci USA 53:134–139.
  3. 3.
    Sasaki S, Kudo Y, Ochiai S, Abe H (1971) Automated chemical structure analysis of organic compounds—attempt to structure determination by use of NMR. Mikrochim Acta 726–742. doi: 10.1007/BF01217096
  4. 4.
    Carhart RE, Smith DH, Brown H, Djerassi C (1975) Applications of artificial intelligence for chemical inference. 17. Approach to computer-assisted elucidation of molecular structure. J Am Chem Soc 97: 5755–5762. doi: 10.1021/ja00853a021 CrossRefGoogle Scholar
  5. 5.
    Bohacek RS, Martin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modelling approach. Med Res Rev 16: 3–50. doi: 10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Fink T, Reymond J-L (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J Chem Inf Model 47: 342–353. doi: 10.1021/ci600423u PubMedCrossRefGoogle Scholar
  7. 7.
    Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43: 218–227. doi: 10.1021/ci0200467 PubMedCrossRefGoogle Scholar
  8. 8.
    Blum LC, Reymond J-L (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 131: 8732–8733. doi: 10.1021/ja902302h PubMedCrossRefGoogle Scholar
  9. 9.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23: 3–25. doi: 10.1016/S0169-409X(00)00129-0 CrossRefGoogle Scholar
  10. 10.
    Mann A (2008) Conformational restriction and/or steric hindrance in medicinal chemistry. In: Wermuth CG. Practice of medicinal chemistry. Academic Press/Elsevier, Amsterdam, pp 363–379Google Scholar
  11. 11.
    Ohno K, Nagahara Y, Tsunoyama K, Orita M (2010) Are there differences between launched drugs, clinical candidates, and commercially available compounds?. J Chem Inf Model 50: 815–821. doi: 10.1021/ci100023s PubMedCrossRefGoogle Scholar
  12. 12.
    Muchmore SW, Edmunds JJ, Stewart KD, Hajduk PJ (2010) Cheminformatic tools for medicinal chemists. J Med Chem 53: 4830–4841. doi: 10.1021/jm100164z PubMedCrossRefGoogle Scholar
  13. 13.
    Grygorenko OO, Radchenko DS, Volochnyuk DM, Tolmachev AA, Komarov IV (2011) Bicyclic conformationally restricted diamines. Chem Rev 111: 5506–5568. doi: 10.1021/cr100352k PubMedCrossRefGoogle Scholar
  14. 14.
    Watanabe M, Kazuta Y, Hayashi H, Yamada S, Matsuda A, Shuto S (2006) Stereochemical diversity-oriented conformational restriction strategy, Development of potent histamine H3 and/or H4 receptor antagonists with an imidazolylcyclopropane structure. J Med Chem 49: 5587–5596. doi: 10.1021/jm0603318 PubMedCrossRefGoogle Scholar
  15. 15.
    Balaban TA (1976) Chemical application of graph theory. Academic Press, London. p 288Google Scholar
  16. 16.
    Proudfoot JR (2008) High-throughput screening and drug discovery. In: Wermuth CG (ed) Practice of medicinal chemistry. Academic Press/Elsevier, Amsterdam. pp 144–158Google Scholar
  17. 17.
    Bohanec S, Perdih M (1993) Symmetry of chemical structures: a novel method of graph automorphism group determination. J Chem Inf Comput Sci 33: 719–726. doi: 10.1021/ci00015a010 CrossRefGoogle Scholar
  18. 18.
    Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 29: 97–101. doi: 10.1021/ci00062a008 CrossRefGoogle Scholar
  19. 19.
    Reaxys®, Elsevier, . Accessed July 2010
  20. 20.
    JChem, version 3.1. ChemAxon, Budapest, Hungary (2005) . Accessed Nov 2009
  21. 21.
    Congreve M, Carr R, Murray C, Jhoti H (2003) A ’rule of three’ for fragment-based lead discovery?. Drug Discov Today 8: 876–877. doi: 10.1016/S1359-6446(03)02831-9 PubMedCrossRefGoogle Scholar
  22. 22.
    Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties. J Med Chem 43: 3714–3717. doi: 10.1021/jm000942e PubMedCrossRefGoogle Scholar
  23. 23.
    MDL Drug Data Report (MDDR) version 2010.2 32.08, Elsevier MDL, . Accessed Sept 2010
  24. 24.
    Lauri G, Bartlett PA (1994) CAVEAT: a program to facilitate the design of organic molecules. J Comput Aided Mol Des 8: 51–66. doi: 10.1007/BF00124349 PubMedCrossRefGoogle Scholar
  25. 25.
    Radchenko DS, Pavlenko SO, Grygorenko OO, Volochnyuk DM, Shishkina SV, Shishkin OV, Komarov IV (2010) Cyclobutane-derived diamines: synthesis and molecular structure. J Org Chem 75: 5941–5952. doi: 10.1021/jo101271h PubMedCrossRefGoogle Scholar
  26. 26.
    Yarmolchuk VS, Mukan IL, Grygorenko OO, Tolmachev AA, Shishkina SV, Shishkin OV, Komarov IV (2011) An entry into hexahydro-2H-thieno[2,3-c]pyrrole 1,1-dioxide derivatives. J Org Chem 76: 7010–7016. doi: 10.1021/jo200878t PubMedCrossRefGoogle Scholar
  27. 27.
    Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput C 22: 1025–1034. doi: 10.1109/T-C.1973.223640 CrossRefGoogle Scholar
  28. 28.
    Barnard JM, Downs GM (1997) Chemical fragment generation and clustering software. J Chem Inf Comput Sci 37: 141–142. doi: 10.1021/ci960090k CrossRefGoogle Scholar
  29. 29.
    Desai MC, Lefkowitz SL (1994) Application of β-lactams in the synthesis of substance P antagonists: preparation of 2-azabicyclo[3.3.1]nonane ring systems. Tetrahedron Lett 35: 4701–4704. doi: 10.1016/S0040-4039(00)76945-0 CrossRefGoogle Scholar
  30. 30.
    Böhm H-J, Flohr A, Stahl M (2004) Scaffold hopping. Drug Discov Today 1: 217–224. doi: 10.1016/j.ddtec.2004.10.009 Google Scholar
  31. 31.
    Bunnelle WH, Daanen JF, Ryther KB, Schrimpf MR, Dart MJ, Gelain A, Meyer MD, Frost JM, Anderson DJ, Buckley M, Curzon P, Cao Y-J, Puttfarcken P, Searle X, Ji J, Putman CB, Surowy C, Toma L, Barlocco D (2007) Structure–activity studies and analgesic efficacy of N-(3-pyridinyl)-bridged bicyclic diamines, exceptionally potent agonists at nicotinic acetylcholine receptors. J Med Chem 50: 3627–3644. doi: 10.1021/jm070018l PubMedCrossRefGoogle Scholar
  32. 32.
    Schrimpf MR, Tietje KR, Toupence RB, Ji J, Basha A, Bunnelle WH, Daanen JF, Pace JM, Sippy KB (2001) Diazabicyclic central nervous system active agents. PCT Int. Appl. WO 0181347Google Scholar
  33. 33.
    Hammond PS, Mazurov AA, Miao L, Xiao Y-D, Bhatti B, Strachan J-P, Murthy VS, Kombo, DC, Akireddy SR (2008) Heterocyclic-carbonyl-diazabicycloalkanes as modulators of the neuronal nicotinic acetylcholine 42 subtype receptor for the treatment of cns related disorders. PCT Int. Appl. WO 2008112734Google Scholar
  34. 34.
    Chu DT, Li Q, Cooper CS, Fung AKL, Lee CM, Plattner JJ, Ma Z, Wang W-B (1996) Quinolizinone type compounds. PCT Int. Appl. WO 9639407Google Scholar
  35. 35.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  36. 36.
    Von Arnim M, Ahlrichs R (1998) Performance of parallel TURBOMOLE for density functional calculations. J Comput Chem 19: 1746–1757. doi: 10.1002/(SICI)1096-987X(19981130)19:15<1746::AID-JCC7>3.0.CO;2-N CrossRefGoogle Scholar
  37. 37.
    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97: 2571–2577. doi: 10.1063/1.463096 CrossRefGoogle Scholar
  38. 38.
    Neese F (2009) ORCA 2.6.0. University of Bonn, Germany . Accessed Nov 2009
  39. 39.
    Marvin, version 4.0. ChemAxon, Budapest, Hungary (2005) . Accessed Nov 2009
  40. 40.
    Cramer CJ (2004) Essentials of computational chemistry: theories and models. Wiley, Chichester, p 596Google Scholar
  41. 41.
    Kozlowski MC, Xu Z, Santos AG (2001) Synthesis and conformational analysis of 2,6-dimethyl-1,5-diaza-cis-decalins. Tetrahedron 57: 4537–4542. doi: 10.1016/S0040-4020(01)00370–2 CrossRefGoogle Scholar
  42. 42.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38. doi: 10.1016/0263-7855(96)00018-5 PubMedCrossRefGoogle Scholar
  43. 43.
    XLSTAT, version 2012.2.03 (trial). Addinsoft, Paris, France . Accessed April 2012
  44. 44.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2: 799–805. doi: 10.1039/P29930000799 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Oleksandr O. Grygorenko
    • 1
    • 2
  • Roman Prytulyak
    • 1
  • Dmitriy M. Volochnyuk
    • 2
    • 3
  • Volodymyr Kudrya
    • 3
  • Oleksiy V. Khavryuchenko
    • 1
  • Igor V. Komarov
    • 1
    • 2
    Email author
  1. 1.Kyiv National Taras Shevchenko UniversityKyivUkraine
  2. 2.Enamine Ltd.KyivUkraine
  3. 3.Institute of Organic Chemistry National Academy of Sciencesof UkraineKyivUkraine

Personalised recommendations