Molecular Diversity

, Volume 15, Issue 2, pp 401–416 | Cite as

Chemical biology of Histone acetyltransferase natural compounds modulators

  • Fabrizio Dal Piaz
  • Antonio Vassallo
  • Osmany Cuesta Rubio
  • Sabrina Castellano
  • Gianluca Sbardella
  • Nunziatina De Tommasi
Comprehensive Review


Histone acetyltransferases (HATs) are a class of epigenetic enzymes crucial for chromatin restructuring and transcriptional regulation in eukaryotic cells, thus being a promising target for therapeutic development. Nonetheless, differently from histone deacetylases (HDACs) inhibitors, there is still paucity of small-molecule modulators of HAT activity. After a decline during past decade, natural products and their derivatives could be once again a valuable tool in the lead discovery process and meet such need of Novel Chemical Entities (NCEs). In this review, we will provide a comprehensive summary on the discovery of small-molecule HAT modulators from naturally occurring molecular scaffolds.


Histone acetyltransferases Natural compounds Polyisoprenylated benzophenone derivatives Anacardic acid Polyphenols 



Activated transcription factor 2




CREB-binding protein




Dimethyl sulfoxide


(−)-Epigallocatechin gallate


Estrogen receptor


Transcription factor acetyltransferase


General control of nitrogen metabolism-5 protein


Histone H2A


Histone H2B


Histone H3


Histone H4


Histone acetyltransferase


Histone deacetylase


Human uterine cervical carcinoma cells, after the name of Henrietta Lacks, a patient at Johns Hopkins Hospital, Baltimore


Histone methyltransferase




Human interferon-inducible protein 10


Michigan Cancer Foundation-7


Macrophage-inflammatory protein-2


MOZ, YBF2/SAS3, SAS2, TIP60 N-acetyltransferase


Monocytic leukaemia zinc-finger protein


Nuclear factor-kappa B


Nitric oxide synthase 2


E1A binding protein p300/CREB-binding protein


p300 HAT domain


Polyisoprenylated benzophenone derivatives


Peripheral blood lymphocytes


Prostate cancer


p300/CBP-associated factor


Sodium dodecyl sulfate - Polyacrylamide gel electrophoresis






Solanum nigrum L


Surface plasmon resonance


Steroid receptor coactivator 1


Steroid receptor coactivator 2


TBP associated factor II250


TATA-binding protein


Tumor necrosis factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51: 786–794PubMedGoogle Scholar
  2. 2.
    Pogo BGT, Allfrey VG, Mirsky AE (1966) RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc Natl Acad Sci USA 55: 6212–6222Google Scholar
  3. 3.
    Wolffe AP (1992) Chromatin: structure and function. Academic Press, LondonGoogle Scholar
  4. 4.
    Allfrey VG (1966) Structural modifications of histones and their possible role in the regulation of ribonucleic acid synthesis. Proc Can Cancer Res Conf 6: 313–335Google Scholar
  5. 5.
    Bradbury EM (1992) Reversible histone modifications and the chromosome cell cycle. Bioessays 14: 9–16. doi: 10.1002/bies.950140103 PubMedGoogle Scholar
  6. 6.
    Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349–352. doi: 10.1038/38664 PubMedGoogle Scholar
  7. 7.
    Thompson JS, Ling X, Grunstein M (1994) Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369: 245–247. doi: 10.1038/369245a0 PubMedGoogle Scholar
  8. 8.
    Durrin L, Mann R, Kayne P, Grunstein M (1991) Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65: 1023–1031. doi: 10.1016/0092-8674(91)90554-C PubMedGoogle Scholar
  9. 9.
    Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70: 81–120PubMedGoogle Scholar
  10. 10.
    Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12: 142–148. doi: 10.1016/S0959-437X(02)00279-4 PubMedGoogle Scholar
  11. 11.
    Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435–459PubMedGoogle Scholar
  12. 12.
    Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5: 981–989. doi: 10.1158/1541-7786.MCR-07-0324 PubMedGoogle Scholar
  13. 13.
    Rouaux C, Jokic N, Mbebi Boutiller S, Leoffler JP, Boutiller AL (2003) Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 22: 6537–6549. doi: 10.1093/emboj/cdg615 PubMedGoogle Scholar
  14. 14.
    Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13: 539–550. doi: 10.1038/sj.cdd.4401769 PubMedGoogle Scholar
  15. 15.
    Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51. doi: 10.1038/nrc1779 PubMedGoogle Scholar
  16. 16.
    Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R (2005) Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 25: 261–309. doi: 10.1002/med.20024 PubMedGoogle Scholar
  17. 17.
    Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95: 3003–3007PubMedGoogle Scholar
  18. 18.
    Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241: 126–133. doi: 10.1006/excr.1998.4027 PubMedGoogle Scholar
  19. 19.
    Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8: 284–295. doi: 10.1038/nrm2145 PubMedGoogle Scholar
  20. 20.
    Shikama N, Lyon J, LaThangue NB (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 7: 230–236. doi: 10.1016/S0962-8924(97)01048-9 Google Scholar
  21. 21.
    Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643. doi: 10.1038/384641a0 PubMedGoogle Scholar
  22. 22.
    Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis CD (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270. doi: 10.1016/S0092-8674(00)81821-8 PubMedGoogle Scholar
  23. 23.
    Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou JX, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsay MJ, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–198. doi: 10.1038/38304 PubMedGoogle Scholar
  24. 24.
    Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y, Yokoyama KK (2000) ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405: 195–200. doi: 10.1038/35012097 PubMedGoogle Scholar
  25. 25.
    Doi M, Hirayama J, & Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497–508. doi: 10.1016/j.cell.2006.03.033 PubMedGoogle Scholar
  26. 26.
    Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363(4): 15–23. doi: 10.1016/j.gene.2005.09.010 PubMedGoogle Scholar
  27. 27.
    Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491–496. doi: 10.1038/20974 PubMedGoogle Scholar
  28. 28.
    Jacobson RH, Ladurner AG, King DS, Tijan R (2000) Structure and function of a human TAF(II)250 double bromodomain module. Science 288: 1422–1425. doi: 10.1126/science.288.5470.1422 PubMedGoogle Scholar
  29. 29.
    Ornaghi P, Ballario P, Lena AM, Gonzalez A, Filetici P (1999) The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J Mol Biol 287: 1–7. doi: 10.1006/jmbi.1999.2577 PubMedGoogle Scholar
  30. 30.
    Giles RH, Peters DJ, Breuning MH (1998) Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 14: 178–183. doi: 10.1016/S0168-9525(98)01438-3 PubMedGoogle Scholar
  31. 31.
    Murata T, Kurokawa R, Krones A, Tatsumi K, Ishii M, Taki T, Masuno M, Ohashi H, Yanagisawa M, Rosenfeld MG, Glass CK, Hayashi Y (2001) Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome. Hum Mol Genet 10: 1071–1076. doi: 10.1093/hmg/10.10.1071 PubMedGoogle Scholar
  32. 32.
    Kundu TK, Palhan V, Wang Z, An W, Cole PA, Roeder RG (2000) Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol Cell 6: 551–561. doi: 10.1016/S1097-2765(00)00054-X PubMedGoogle Scholar
  33. 33.
    Burley SK (1994) DNA-binding motifs from eukaryotic transcription factors. Curr Opin Struct Biol 4: 3–11. doi: 10.1016/S0959-440X(94)90053-1 Google Scholar
  34. 34.
    Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20: 615–626. doi: 10.1002/(SICI)1521-1878(199808)20:8 PubMedGoogle Scholar
  35. 35.
    Lau OD, Kundu TK, Soccio RE, Ait-Si-Ali S, Khalil EM, Vassilev A, Wolffe AP, Nakatani Y, Roeder RG, Cole PA (2000) HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell 5: 589–595. doi: 10.1016/S1097-2765(00)80452-9 PubMedGoogle Scholar
  36. 36.
    Mai A (2007) The therapeutic uses of chromatin-modifying agents. Expert Opin Ther Targets 11: 835–851. doi: 10.1517/14728222.11.6.835 PubMedGoogle Scholar
  37. 37.
    Acuña UM, Jancovski N, Kennelly EJ (2009) Polyisoprenylated benzophenones from Clusiaceae: potential drugs and lead compounds. Curr Top Med Chem 9: 1560–1580. doi: 10.2174/156802609789909830 PubMedGoogle Scholar
  38. 38.
    Hernández IM, Fernandez MC, Cuesta-Rubio O, Piccinelli AL, Rastrelli L (2005) Polyprenylated benzophenone derivatives from Cuban propolis. J Nat Prod 68: 931–934. doi: 10.1021/np0495884 PubMedGoogle Scholar
  39. 39.
    Ciochina R, Grossman RB (2006) Polycyclic polyprenylated acylphloroglucinols. Chem Rev 106: 3963–3986. doi: 10.1021/cr0500582 PubMedGoogle Scholar
  40. 40.
    Padhye S, Ahmad A, Oswal N, Sarkar FH (2009) Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2: 38. doi: 10.1186/1756-8722-2-38 PubMedGoogle Scholar
  41. 41.
    Prasad S, Ravindran J, Sung B, Pandey MK, Aggarwal BB (2010) Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins. Mol Cancer Ther 9: 856–868. doi: 10.1158/1535-7163.MCT-09-1113 PubMedGoogle Scholar
  42. 42.
    Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK (2004) Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279: 33716–33726. doi: 10.1074/jbc.M402839200 PubMedGoogle Scholar
  43. 43.
    Hong J, Kwon SJ, Sang S, Ju J, Zhou JN, Ho CT, Huang MT, Yang CS (2007) Effects of garcinol and its derivatives on intestinal cell growth: Inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radic Biol Med 42: 1211–1221. doi: 10.1016/j.freeradbiomed.2007.01.016 PubMedGoogle Scholar
  44. 44.
    Arif M, Pradhan SK, Thanuja GR, Vedamurthy BM, Agrawal S, Dasgupta D, Kundu TK (2009) Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 52: 267–277. doi: 10.1021/jm800657z PubMedGoogle Scholar
  45. 45.
    Dal Piaz F, Tosco A, Eletto D, Piccinelli AL, Moltedo O, Franceschelli S, Sbardella G, Remondelli P, Rastrelli L, Vesci L, Pisano C, De Tommasi N (2010) The identification of a novel natural activator of p300 histone acetyltranferase provides new insights into the modulation mechanism of this enzyme. ChemBioChem 11: 818–827. doi: 10.1002/cbic.200900721 PubMedGoogle Scholar
  46. 46.
    Mantelingu K, Reddy BA, Swaminathan V, Kishore AH, Siddappa NB, Kumar GV, Nagashankar G, Natesh N, Roy S, Sadhale PP, Ranga U, Narayana C, Kundu TK (2007) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14: 645–657. doi: 10.1016/j.chembiol.2007.04.011 PubMedGoogle Scholar
  47. 47.
    Kubo I, Komatsu S, Ochi M (1986) Molluscicides from the cashew Anacardium occidentale and their large-scale isolation. J Agric Food Chem 34: 970–973. doi: 10.1021/jf00072a010 Google Scholar
  48. 48.
    Itokawa H, Totsuka N, Nakahara K, Takeya K, Lepoittevin JP, Asakawa Y (1987) Antitumor principles from Ginkgo biloba L. Chem Pharmaceut Bull 35: 3016–3020Google Scholar
  49. 49.
    Kubo I, Kim M, Naya K, Komatsu S, Yamagiwa Y, Ohashi K, Sakamoto Y, Hirakawa S, Kamikawa T (1987) Prostaglandin synthetase inhibitors from the African medicinal plant Ozoroa mucronata. Chem Lett 6: 1101–1104. doi: 10.1246/cl.1987.1101 Google Scholar
  50. 50.
    Himejima M, Kubo I (1991) Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agric Food Chem 39: 418–421. doi: 10.1021/jf00002a039 Google Scholar
  51. 51.
    Paul VJ, Yeddanapalli LM (1954) Olefinic nature of anacardic acid from Indian cashew-nut shell liquid. Nature 174: 604. doi: 10.1038/174604a0 Google Scholar
  52. 52.
    Trevisan MTS, Pfundstein B, Haubner R, Würtele G, Spiegelhalder B, Bartsch H, Owen RW (2006) Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem Toxicol 44: 188–197. doi: 10.1016/j.fct.2005.06.012 PubMedGoogle Scholar
  53. 53.
    Kubo I, Kinst-Hori I, Yokokawa Y (1994) Tyrosinase inhibitors from Anacardium occidentale fruits. J Nat Prod 57: 545–551. doi: 10.1021/np50106a021 PubMedGoogle Scholar
  54. 54.
    Masuoka N, Kubo I (2004) Characterization of xanthine oxidase inhibition by anacardic acids. BBA Mol Basis Dis 1688: 245–249. doi: 10.1016/j.bbadis.2003.12.010 Google Scholar
  55. 55.
    Lee JS, Cho YS, Park EJ, Kim J, Oh WK, Lee HS, Ahn JS (1998) Phospholipase Cγ1 inhibitory principles from the sarcotestas of Ginkgo biloba. J Nat Prod 61: 867–871. doi: 10.1021/np970367q PubMedGoogle Scholar
  56. 56.
    Wang D, Girard TJ, Kasten TP, LaChance RM, Miller-Wideman MA, Durley RC (1998) Inhibitory activity of unsaturated fatty acids and anacardic acids toward soluble tissue factor-factor VIIa complex. J Nat Prod 61: 1352–1355. doi: 10.1021/np980117p PubMedGoogle Scholar
  57. 57.
    Grazzini R, Hesk D, Heininger E, Hildenbrandt G, Reddy CC, Cox-Foster D, Medford J, Craig R, Mumma RO (1991) Inhibition of lipoxygenase and prostaglandin endoperoxide synthase by anacardic acids. Biochem Biophys Res Commun 176: 775–780. doi: 10.1016/S0006-291X(05)80252-9 PubMedGoogle Scholar
  58. 58.
    Ha TJ, Kubo I (2005) Lipoxygenase inhibitory activity of anacardic acids. J Agric Food Chem 53: 4350–4354. doi: 10.1021/jf048184e PubMedGoogle Scholar
  59. 59.
    Paramashivappa R, Phani Kumar P, Subba Rao PV, Srinivasa Rao A (2003) Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors. Bioorg Med Chem Lett 13: 657–660. doi: 10.1016/S0960-894X(02)01006-5 PubMedGoogle Scholar
  60. 60.
    Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278: 19134–19140. doi: 10.1074/jbc.M301580200 PubMedGoogle Scholar
  61. 61.
    Sun Y, Jiang X, Chen S, Price BD (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580: 4353–4356. doi: 10.1016/j.febslet.2006.06.092 PubMedGoogle Scholar
  62. 62.
    Mai A, Rotili D, Tarantino D, Ornaghi P, Tosi F, Vicidomini C, Sbardella G, Nebbioso A, Miceli M, Altucci L, Filetici P. (2006) Small-molecule inhibitors of histone acetyltransferase activity: identification and biological properties. J Med Chem 49: 6897–6907. doi: 10.1021/jm060601m PubMedGoogle Scholar
  63. 63.
    Eliseeva ED, Valkov V, Jung M, Jung MO (2007) Characterization of novel inhibitors of histone acetyltransferases. Mol Cancer Ther 6: 2391–2398. doi: 10.1158/1535-7163.MCT-07-0159 PubMedGoogle Scholar
  64. 64.
    Souto JA, Conte M, Alvarez R, Nebbioso A, Carafa V, Altucci L, de Lera AR (2008) Synthesis of benzamides related to anacardic acid and their histone acetyltransferase (HAT) inhibitory activities. ChemMedChem 3: 1435–1442. doi: 10.1002/cmdc.200800096 PubMedGoogle Scholar
  65. 65.
    Sbardella G, Castellano S, Vicidomini C, Rotili D, Nebbioso A, Miceli M, Altucci L, Mai A (2008) Identification of long chain alkylidenemalonates as novel small molecule modulators of histone acetyltransferases. Bioorg Med Chem Lett 18: 2788–2792. doi: 10.1016/j.bmcl.2008.04.017 PubMedGoogle Scholar
  66. 66.
    Dekker FJ, Haisma HJ (2009) Histone acetyl transferases as emerging drug targets. Drug Discov Today 14: 942–948. doi: 10.1016/j.drudis.2009.06.008 PubMedGoogle Scholar
  67. 67.
    Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB (2008) Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-κB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-κB α kinase, leading to potentiation of apoptosis. Blood 111: 4880–4891. doi: 10.1182/blood-2007-10-117994 PubMedGoogle Scholar
  68. 68.
    Ammon HPT, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57: 1–7. doi: 10.1055/s-2006-960004 PubMedGoogle Scholar
  69. 69.
    Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78: 2081–2087. doi: 10.1016/j.lfs.2005.12.007 PubMedGoogle Scholar
  70. 70.
    Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23: 363–398PubMedGoogle Scholar
  71. 71.
    Chauhan DP (2002) Chemotherapeutic potential of curcumin for colorectal cancer. Curr Pharm Des 8: 1695–1706PubMedGoogle Scholar
  72. 72.
    Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9: 161–168. doi: 10.1089/107555303321223035 PubMedGoogle Scholar
  73. 73.
    Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279: 51163–51171. doi: 10.1074/jbc.M409024200 PubMedGoogle Scholar
  74. 74.
    Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J, Neckers L (2006) Curcumin is an inhibitor of p300 histone acetyltransferase. Med Chem 2: 169–174PubMedGoogle Scholar
  75. 75.
    Li Q, Su A, Chen J, Lefebvre YA, Haché RJ (2002) Attenuation of glucocorticoid signaling through targeted degradation of p300 via the 26S proteasome pathway. Mol Endocrinol 16: 2819–2827. doi: 10.1210/me.2002-0154 PubMedGoogle Scholar
  76. 76.
    Costi R, Di Santo R, Artico M, Miele G, Valentini P, Novellino E, Cereseto A (2007) Cnnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase. J Med Chem 50: 1973–1977. doi: 10.1021/jm060943s PubMedGoogle Scholar
  77. 77.
    Mai A, Cheng D, Bedford MT, Valente S, Nebbioso A, Perrone A, Brosch G, Sbardella G, De Bellis F, Miceli M, Altucci L (2008) Epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (Sirtuin) inhibitors. J Med Chem 51: 2279–2290. doi: 10.1021/jm701595q PubMedGoogle Scholar
  78. 78.
    Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T, Hasegawa K (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118: 868–878. doi: 10.1172/JCI33160 PubMedGoogle Scholar
  79. 79.
    Stobicki M, Kachliki P (2006) The science of flavonoids. In: Grotewald E. (ed). Springer, Columbus, pp. 47–49Google Scholar
  80. 80.
    Lin JK, Weng MS (2006) The Science of Flavonoids. In: Grotewald E. (ed). Springer, Columbus, pp. 213–238Google Scholar
  81. 81.
    Materska M (2008) Quercetin and its derivatives: chemical structure and bioactivity—a review. Pol J Food Nutr Sci, and references therein reported 58(4): 407–413Google Scholar
  82. 82.
    Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi N, Burman AC (2009) Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anticancer Agents Med Chem, and references therein reported. 9(2): 138–161. doi: 10.2174/187152009787313855 Google Scholar
  83. 83.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20: 933–956. doi: 10.1016/0891-5849(95)02227-9 PubMedGoogle Scholar
  84. 84.
    Middleton EJ, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673–751PubMedGoogle Scholar
  85. 85.
    Colic M, Pavelic K (2000) Molecular mechanisms of anticancer activity of natural dietetic products. J Mol Med 78: 333–336. doi: 10.1007/s001090000121 PubMedGoogle Scholar
  86. 86.
    Kong AN, Yu R, Hebbar V, Chen C, Owuor E, Hu R, Ee R, Mandlekar S (2001) Signal transduction events elicited by cancer prevention compounds. Mutat Res 480(481): 231–241. doi: 10.1016/S0027-5107(01)00182-8 PubMedGoogle Scholar
  87. 87.
    Ruiz PA, Braune A, Hölzlwimmer G, Quintanilla-Fend L, Haller D (2007) Quercetin inhibits TNF-induced NF−κB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J Nutr 137: 1208–1215PubMedGoogle Scholar
  88. 88.
    Nestel PJ, Pomeroy S, Kay S, Komesaroff P, Behrsing J, Cameron JD, West L (1999) Isoflavones from red clover improve systemic arterial compliance but not plasma lipids in menopausal women. J Clin Endocrinol Metab 84: 895–898. doi: 10.1210/jc.84.3.895 PubMedGoogle Scholar
  89. 89.
    Gennari C, Agnusdei D, Crepaldi G, Isaia G, Mazzuoli G, Ortolani S, Bufalino L, Passeri M (1998) Effects of ipriflavone—a synthetic derivative of natural isoflavones on bone mass in early years after menopause. Menopause 5: 9–15PubMedGoogle Scholar
  90. 90.
    Messina M, Barnes S (1991) The role of soy products in reducing cancer risk. J Natl Cancer Inst 83: 541–546. doi: 10.1093/jnci/83.8.541 PubMedGoogle Scholar
  91. 91.
    Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93: 5925–5930PubMedGoogle Scholar
  92. 92.
    Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138: 863–870. doi: 10.1210/en.138.3.863 PubMedGoogle Scholar
  93. 93.
    Kraus WL, Kadonaga JT (1998) p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev 12: 331–342PubMedGoogle Scholar
  94. 94.
    Sadovsky Y, Webb P, Lopez G, Baxter J, Fitzpatrick P, Gizang-Ginsberg E, Cavailles V, Parker M, Kushner P (1995) Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein. Mol Cell Biol 15: 1554–1563PubMedGoogle Scholar
  95. 95.
    Chen CJ, Deng Z, Kim AY, Blobel GA, Lieberman PM. (2001) Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol 21: 476–487. doi: 10.1128/MCB.21.2.476-487.2001 PubMedGoogle Scholar
  96. 96.
    Hardy S, Brand M, Mittler G, Yanagisawa J, Kato S, Meisterernst M, Tora L (2002) TATA-binding potein-free TAF-containing complex (TFTC) and p300 are both required for efficient transcriptional activation. J Biol Chem 277: 32875–32882. doi: 10.1074/jbc.M205860200 PubMedGoogle Scholar
  97. 97.
    Hong T, Nakagawa T, Pan W, Kim MY, Kraus WL, Ikehara T, Yasui K, Aihara H, Takebe M, Muramatsu M, Ito T (2004) Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 317: 259–264. doi: 10.1016/j.bbrc.2004.03.041 PubMedGoogle Scholar
  98. 98.
    Kim MY, Hsiao SJ, Kraus WL (2001) A role for coactivators and histone acetylation in estrogen receptor a-mediated transcription initiation. EMBO J 20: 6084–6094. doi: 10.1093/emboj/20.21.6084 PubMedGoogle Scholar
  99. 99.
    Yang CS, Liao J, Yang GY, Lu G (2005) Inhibition of lung tumorigenesis by tea. Exp Lung Res 31: 135–144PubMedGoogle Scholar
  100. 100.
    Chan MM, Fong D, Ho CT, Huang HI (1997) Inhibition of inducible nitric oxide synthase gene expression and enzyme activity by epigallocatechin gallate, a natural product from green tea. Biochem Pharmacol 54: 1281–1286. doi: 10.1016/S0006-2952(97)00504-2 PubMedGoogle Scholar
  101. 101.
    Kim SJ, Jeong HJ, Lee KM, Myung NY, An NH, Yang WM, Park SK, Lee HJ, Hong SH, Kim HM, Um JY (2007) Epigallocatechin-3-gallate suppresses NF−κB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. J Nutr Biochem 18: 587–596. doi: 10.1016/j.jnutbio.2006.11.001 PubMedGoogle Scholar
  102. 102.
    Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM, Yoon HG (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of ReIA acetylation. Cancer Res 69: 583–592. doi: 10.1158/0008-5472.CAN-08-2442 PubMedGoogle Scholar
  103. 103.
    Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63: 7563–7570PubMedGoogle Scholar
  104. 104.
    Shamma M, Guinaudeau H (1986) Aporphinoid alkaloids. Nat Prod Rep 3: 345–351PubMedGoogle Scholar
  105. 105.
    Malikova J, Zdarilova A, Hlobilkova A (2006) Effects of SGR and chelerythrine on the cell cycle and apoptosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150: 5–12PubMedGoogle Scholar
  106. 106.
    Adhami VM, Aziz MH, Mukhtar H, Ahmad N (2003) Activation of prodeath Bcl-2 family proteins and mitochondrial apoptosis pathway by SGR in immortalized human HaCaT keratinocytes. Clin Cancer Res 9: 3176–3182PubMedGoogle Scholar
  107. 107.
    Mandel ID (1994) Antimicrobial mouthrinses: overview and update. J Am Dent Assoc 125: 2S–10SPubMedGoogle Scholar
  108. 108.
    Chaturvedi MM, Kumar A, Darnay BG, Chainy GB, Agarwal S, Aggarwal BB (1997) SGR (pseudochelerythrine) is a potent inhibitor of NF−κB activation, IκBα phosphorylation, and degradation. J Biol Chem 272: 30129–30134. doi: 10.1074/jbc.272.48.30129 PubMedGoogle Scholar
  109. 109.
    Wolff J, Knipling L (1993) Antimicrotubule properties of benzophenanthridine alkaloids. Biochemistry 32: 13334–13339. doi: 10.1021/bi00211a047 PubMedGoogle Scholar
  110. 110.
    Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA, Lazo JS (2005) The benzo[c]phenanthridine alkaloid, SGR, is a selective, cell-active inhibitor of mitogen activated protein kinase phosphatase-I. J Biol Chem 280: 19078–19086. doi: 10.1074/jbc.M501467200 PubMedGoogle Scholar
  111. 111.
    Barreto MC, Pinto RE, Arrabaca JD, Pavao ML (2003) Inhibition of mouse liver respiration by Chelidinium majus isoquinoline alkaloids. Toxicol Lett 146: 37–47. doi: 10.1016/j.toxlet.2003.09.007 PubMedGoogle Scholar
  112. 112.
    Wang BH, Lu ZX, Polya GM (1997) Inhibition of eukaryotic protein kinase by isoquinoline and oxazine alkaloids. Planta Med 63: 494–498. doi: 10.1055/s-2006-957749 PubMedGoogle Scholar
  113. 113.
    Ulrichova J, Dvorak Z, Vicra J, Lata J, Smrzova J, Sedo A, Somanek V (2001) Cytoyoxicity of natural compound in hepatocyte cell culture models. The case of quaternary benzo[c]phenanthridine alkaloids. Toxicol Lett 125: 125–132. doi: 10.1016/S0378-4274(01)00430-1 PubMedGoogle Scholar
  114. 114.
    Selvi BR, Pradhan SK, Shandilya J, Das C, Sailaja BS, Shankar GN, Gadad SS, Reddy A, Dasgupta D, Kundu TK (2009) Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin. Chem Biol 16: 203–216. doi: 10.1016/j.chembiol.2008.12.006 Google Scholar
  115. 115.
    Mossa JS, El-Feraly FS, Muhammad I (2004) Antimycobacterial constituents from P Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytother Res 18: 934–937. doi: 10.1002/ptr.1420 PubMedGoogle Scholar
  116. 116.
    Srinivas P, Gopinath G, Banerji A, Dinakar A, Srinivas G (2004) Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol Carcinog 40: 201–211. doi: 10.1002/mc.20031 PubMedGoogle Scholar
  117. 117.
    Ding Y, Chen ZJ, Liu S, Che D, Vetter M, Chang CH (2005) Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol 57: 111–116. doi: 10.1211/0022357055119 PubMedGoogle Scholar
  118. 118.
    Hsieh Y-J, Lin L-C, Tsai T-H (2005) Determination and identification of plumbagin from the roots of Plumbago zeylanica L. by liquid chromatography with tandem mass spectrometry. J Chromatogr A 1083: 141–145. doi: 10.1016/j.chroma.2005.06.030 PubMedGoogle Scholar
  119. 119.
    Singh UV, Udupa N (1997) Reduced toxicity and enhanced antitumor efficacy of betacyclodextrin plumbagin inclusion complex in mice bearing Ehrlich ascites carcinoma. Indian J Physiol Pharmacol 41: 171–175PubMedGoogle Scholar
  120. 120.
    Sugie S, Okamoto K, Rahman KMW, Tanaka T, Kawai K, Yamahara J, Mori H (1998) Inhibitory effects of plumbagin and juglone on azoxymethane-induced intestinal carcinogenesis in rats. Cancer Lett 127: 177–183. doi: 10.1016/S0304-3835(98)00035-4 PubMedGoogle Scholar
  121. 121.
    Hsu Y-L, Cho C-Y, Kuo P-L, Huang Y-T, Lin C-C (2006) Plumbagin (5-Hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 aells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther 318: 484–494. doi: 10.1124/jpet.105.098863 PubMedGoogle Scholar
  122. 122.
    Ravindra KC, Selvi BR, Arif M, Reddy BAA, Thanuja GR, Agrawal S, Pradhan SK, Nagashayana N, Dasgupta D, Kundu TK (2009) Inhibition of lysine acetyltransferase KAT3B/p300 activity by a naturally occurring hydroxynaphthoquinone, plumbagin. J Biol Chem 284: 24453–24464. doi: 10.1074/jbc.M109.023861 PubMedGoogle Scholar
  123. 123.
    Galvez AF, de Lumen BO (1999) A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nat Biotechnol 17: 495–500. doi: 10.1038/8676 PubMedGoogle Scholar
  124. 124.
    Jeong HJ, Lam Y, de Lumen BO (2002) Barley lunasin suppresses ras-induced colony formation and inhibits core histone acetylation in mammalian cells. Agric Food Chem 50: 5903–5908. doi: 10.1021/jf0256945 Google Scholar
  125. 125.
    Jeong HJ, Jeong JB, Kim DS, Park JH, Lee JB, Kweon DH, Chung GY, Seo EW, de Lumen BO (2007) The cancer preventive peptide lunasin from wheat inhibits core histone acetylation. Cancer Lett 255: 42–48. doi: 10.1016/j.canlet.2007.03.022 PubMedGoogle Scholar
  126. 126.
    Jeong JB, Jeong HJ, Park JH, Lee SH, Lee JR, Lee HK, Chung GY, Choi JD, de Lumen BO (2007) Cancer-preventive peptide lunasin from Solanum nigrum L. inhibits acetylation of core histones H3 and H4 and phosphorylation of retinoblastoma protein (Rb). J Agric Food Chem 55: 10707–10713. doi: 10.1021/jf072363p PubMedGoogle Scholar
  127. 127.
    Ruoslahti E, Pierschbacher MD (1986) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44: 517–518. doi: 10.1016/0092-8674(86)90259-X PubMedGoogle Scholar
  128. 128.
    de Lumen BO (2005) Lunasin: a cancer-preventive soy peptide. Nutr Rev 63: 16–21. doi: 10.1111/j.1753-4887.2005.tb00106.x PubMedGoogle Scholar
  129. 129.
    Galvez AF, Chen N, Macasieb J, de Lumen BO (2001) Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res 61: 7473–7478PubMedGoogle Scholar
  130. 130.
    Lee M-L, Schneider G (2001) Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. J Comb Chem 3: 284–289. doi: 10.1021/cc000097l PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Fabrizio Dal Piaz
    • 1
  • Antonio Vassallo
    • 2
  • Osmany Cuesta Rubio
    • 3
  • Sabrina Castellano
    • 1
  • Gianluca Sbardella
    • 1
  • Nunziatina De Tommasi
    • 1
  1. 1.Dipartimento di Scienze FarmaceuticheUniversità di SalernoFisciano (SA)Italy
  2. 2.Dipartimento di ChimicaUniversità degli Studi della BasilicataPotenza (PZ)Italy
  3. 3.Universidad de La HabanaHavanaCuba

Personalised recommendations