Molecular Diversity

, Volume 15, Issue 2, pp 383–399 | Cite as

Diversity through semisynthesis: the chemistry and biological activity of semisynthetic epothilone derivatives

  • Karl-Heinz AltmannEmail author
  • Fabienne Z. Gaugaz
  • Raphael Schiess
Comprehensive Review


Epothilones are myxobacterial natural products that inhibit human cancer cell growth through the stabilization of cellular microtubules (i.e., a “taxol-like” mechanism of action). They have proven to be highly productive lead structures for anticancer drug discovery, with at least seven epothilone-type agents having entered clinical trials in humans over the last several years. SAR studies on epothilones have included a large number of fully synthetic analogs and semisynthetic derivatives. Previous reviews on the chemistry and biology of epothilones have mostly focused on analogs that were obtained by de novo chemical synthesis. In contrast, the current review provides a comprehensive overview on the chemical transformations that have been investigated for the major epothilones A and B as starting materials, and it discusses the biological activity of the resulting products. Many semisynthetic epothilone derivatives have been found to exhibit potent effects on human cancer cell growth and several of these have been advanced to the stage of clinical development. This includes the epothilone B lactam ixabepilone (Ixempra®, which has been approved by the FDA for the treatment of advanced and metastatic breast cancer.


Cancer Drug discovery Epothilones Microtubules Natural products SAR Semisynthesis Review 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lu MC (1995) Antimitotic agents. In: Foye WO (ed) Cancer chemotherapeutic agents. American Chemical Society, Washington, pp 345–368Google Scholar
  2. 2.
    Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Expert Opin Pharmacother 3: 755–766. doi: 10.1517/14656566.3.6.755 PubMedCrossRefGoogle Scholar
  3. 3.
    Obasaju C, Hudes GR (2001) Paclitaxel and docetaxel in prostate cancer. Hematol oncol Clin North Am 15: 525–545. doi: 10.1016/S0889-8588(05)70230-6 PubMedCrossRefGoogle Scholar
  4. 4.
    Hamel E (1996) Antimitotic natural products and their interaction with tubulin. Med Res Rev 16: 207–231. doi: 10.1002/chin.199628329 PubMedCrossRefGoogle Scholar
  5. 5.
    Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 48: 353–374. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  6. 6.
    Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277: 665–667. doi: 10.1038/277665a0 PubMedCrossRefGoogle Scholar
  7. 7.
    Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55: 2325–2333PubMedGoogle Scholar
  8. 8.
    Höfle G, Reichenbach H (2005) Epothilone, a myxobacterial metabolite with promising antitumor activity. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor & Francis, Boca Raton, pp 413–450Google Scholar
  9. 9.
    Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1996) Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J Antibiot 49: 560–563. doi: 10.1002/chin.199647256 PubMedGoogle Scholar
  10. 10.
    Hardt IH, Steinmetz H, Gerth K, Sasse F, Reichenbach H, Höfle G (2001) New natural epothilones from Sorangium cellulosum, strains So ce90/B2 and So ce90/D13: isolation, structure elucidation, and SAR studies. J Nat Prod 64: 847–856. doi: 10.1021/np000629f PubMedCrossRefGoogle Scholar
  11. 11.
    Kowalski RJ, Giannakakou P, Hamel E (1997) Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol). J Biol Chem 272: 2534–2541. doi: 10.1074/jbc.272.4.2534 PubMedCrossRefGoogle Scholar
  12. 12.
    Altmann K-H, Wartmann M, O’Reilly T (2000) Epothilones and related structures—a new class of microtubule inhibitors with potent in vivo antitumor activity. Biochim Biophys Acta 1470: M79–M91. doi: 10.1016/S0304-419X(00)00009-3 PubMedGoogle Scholar
  13. 13.
    Wolff A, Technau A, Brandner G (1997) Epothilone A induces apoptosis in neuroblastoma cells with multiple mechanisms of drug resistance. Int J Oncol 11: 123–126Google Scholar
  14. 14.
    Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS (1997) Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272: 17118–17125. doi: 10.1074/jbc.272.27.17118 PubMedCrossRefGoogle Scholar
  15. 15.
    Lechleider RJ, Kaminskas E, Jiang X, Aziz R, Bullock J, Kasliwal R, Harapanhalli R, Pope S, Sridhara R, Leighton J, Booth B, Dagher R, Justice R, Pazdur R (2008) Ixabepilone in combination with capecitabine and as monotherapy for treatment of advanced breast cancer refractory to previous chemotherapies. Clin Cancer Res 14: 4378–4384. doi: 10.1158/1078-0432.CCR-08-0015 PubMedCrossRefGoogle Scholar
  16. 16.
    Nicolaou KC, Roschangar F, Vourloumis D (1998) Chemical biology of epothilones. Angew Chem Int Ed 37: 2014–2045. doi: 10.1002/(SICI)1521-3773(19980817)37:15<2014::AID-ANIE2014>3.3.CO;2-U CrossRefGoogle Scholar
  17. 17.
    Harris CR, Danishefsky SJ (1999) Complex target-oriented synthesis in the drug discovery process: a case history in the dEpoB series. J Org Chem 64: 8434–8456. doi: 10.1021/jo991006d CrossRefGoogle Scholar
  18. 18.
    Mulzer J, Martin HJ, Berger M (1999) Progress in the synthesis of chiral heterocyclic natural products: epothilone B and tartrolon B. J Heterocycl Chem 36: 1421–1436. doi: 10.1002/chin.200019288 Google Scholar
  19. 19.
    Nicolaou KC, Ritzen A, Namoto K (2001) Recent developments in the chemistry, biology and medicine of the epothilones. Chem Commun 1523–1535. doi: 10.1039/B104949F
  20. 20.
    Altmann K-H (2004) The merger of natural product synthesis and medicinal chemistry: on the chemistry and chemical biology of epothilones. Org Biomol Chem 2: 2137–2152. doi: 10.1039/B405839A PubMedCrossRefGoogle Scholar
  21. 21.
    Watkins EB, Chittiboyina AG, Jung JC, Avery MA (2005) The epothilones and related analogues-A review of their syntheses and anti-cancer activities. Curr Pharm Des 11: 1615–1653. doi: 10.2174/1381612053764742 PubMedCrossRefGoogle Scholar
  22. 22.
    Watkins EB, Chittiboyina AG, Avery MA (2006) Recent developments in the syntheses of the epothilones and related analogues. Eur J Org Chem 18: 4071–4084. doi: 10.1002/ejoc.200600149 CrossRefGoogle Scholar
  23. 23.
    Wartmann M, Altmann K-H (2002) The biology and medicinal chemistry of epothilones. Curr Med Chem Anti-Cancer Agents 2: 123–148. doi: 10.2174/1568011023354489 CrossRefGoogle Scholar
  24. 24.
    Altmann K-H (2003) Epothilone B and its analogs—a new family of anticancer agents. Mini-Rev Med Chem 3: 149–158. doi: 10.2174/1389557033405269 PubMedCrossRefGoogle Scholar
  25. 25.
    Borzilleri RM, Vite GD (2002) Epothilones: new tubulin polymerization agents in preclinical and clinical development. Drugs Future 27: 1149–1164. doi: 10.1358/dof.2002.027.12.711728 CrossRefGoogle Scholar
  26. 26.
    Altmann K-H (2005) Recent developments in the chemistry and biology of epothilones. Curr Pharm Des 11: 1595–1613. doi: 10.2174/1381612053764715 PubMedCrossRefGoogle Scholar
  27. 27.
    Altmann K-H, Pfeiffer B, Arseniyadis S, Pratt BA, Nicolaou KC (2007) The chemistry and biology of epothilones—the wheel keeps turning. ChemMedChem 2: 397–423. doi: 10.1002/cmdc.200600206 CrossRefGoogle Scholar
  28. 28.
    Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67: 2141–2153. doi: 10.1021/np040106y PubMedCrossRefGoogle Scholar
  29. 29.
    Hamann MT (2003) Enhancing marine natural product structural diversity and bioactivity through semisynthesis and biocatalysis. Curr Pharm Design 9: 879–889. doi: 10.2174/1381612033455297 CrossRefGoogle Scholar
  30. 30.
    Henkel T, Brunne RM, Müller H, Reichel F (1999) Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed 38: 643–647. doi: 10.1002/(SICI)1521-3773(19990301)38:5<643::AID-ANIE643>3.0.CO;2-G CrossRefGoogle Scholar
  31. 31.
    Kuhn M, Keller-Juslén C, von Wartburg A (1969) Communication on mitosis-inhibiting natural substances. 22. Partial synthesis of 4’-demethylepipodophyllotoxin. Helv Chim Acta 52: 944–947. doi: 10.1002/hlca.19690520410 PubMedCrossRefGoogle Scholar
  32. 32.
    Keller-Juslén C, Kuhn M, Wartburg A, Stähelin H (1971) Mitosis-inhibiting natural products. 24. Synthesis and antimitotic activity of glycosidic lignan derivatives related to podophyllotoxin. J Med Chem 14: 936–940. doi: 10.1021/jm00292a012 PubMedCrossRefGoogle Scholar
  33. 33.
    You Y (2005) Podophyllotoxin derivatives: current synthetic approaches for new anticancer agents. Curr Pharm Design 11: 1695–1717. doi: 10.2174/1381612053764724 CrossRefGoogle Scholar
  34. 34.
    Sawada S, Yokokura T, Miyasaka T (1995) Synthesis and antitumor activity of A-ring or E-lactone modified water-soluble prodrugs of 20(S)-camptothecin, including development of irinotecan hydrochloride trihydrate (CPT-11). Curr Pharm Design 1: 113–132Google Scholar
  35. 35.
    Kingsbury WD, Boehm JC, Jakas DR, Holden KG, Hecht SM, Gallagher G, Caranfa MJ, McCabe FL, Faucette L, Johnson RK, Hertzberg RP (1991) Synthesis of water-soluble (aminoalkyl) camptothecin analogs: inhibition of topoisomerase I and antitumor activity. J Med Chem 34: 98–107. doi: 10.1021/jm00105a017 PubMedCrossRefGoogle Scholar
  36. 36.
    Mathijssen RHJ, Loos WJ, Verweij J, Sparreboom A (2002) Pharmacology of topoisomerase I inhibitors irinotecan (CPT-11) and topotecan. Curr Cancer Drug Targets 2: 103–123. doi: 10.2174/1568009023333890 PubMedCrossRefGoogle Scholar
  37. 37.
    Guenard D, Gueritte-Voegelein F, Potier P (1993) Taxol and taxotere: discovery, chemistry, and structure-activity relationships. Acc Chem Res 26: 160–167. doi: 10.1021/ar00028a005 CrossRefGoogle Scholar
  38. 38.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93: 2325–2327. doi: 10.1021/ja00738a045 PubMedCrossRefGoogle Scholar
  39. 39.
    Holton RA, Biediger RJ, Boatman D (1995) Semisynthesis of taxol and taxotere. In: Suffness M (ed.) Taxol: science and applications. CRC, Boca Raton, pp 97–121. doi: 10.1002/chin.199552275 Google Scholar
  40. 40.
    Wuts PGM (1998) Semisynthesis of Taxol. Curr Opin Drug Discov Dev 1: 329–337Google Scholar
  41. 41.
    Vite GD, Borzilleri RM, Kim SH, Regueiro-Ren A, Humphreys WG, Lee FYF (2001) Epothilones A and B: springboards for semisynthesis of promising antimitotic agents. In: Ojima I, Vite GD, Altmann K-H (eds) Anticancer agents—frontiers in cancer chemotherapy. ACS Symposium Series 796. American Chemical Society, Washington, pp 148–170Google Scholar
  42. 42.
    Sefkow M, Kiffe M, Höfle G (1998) Derivatization of the C12–C13 functional groups of epothilones A, B and C. Bioorg Med Chem Lett 8: 3031–3036. doi: 10.1016/S0960-894X(98)00546-0 PubMedCrossRefGoogle Scholar
  43. 43.
    Altmann K-H, Bold G, Caravatti G, End N, Flörsheimer A, Guagnano V, O’Reilly T, Wartmann M (2000) Epothilones and their analogs—potential new weapons in the fight against cancer. Chimia 54: 612–621Google Scholar
  44. 44.
    Regueiro-Ren A, Leavitt K, Kim SH, Höfle G, Kiffe M, Gougoutas JZ, DiMarco JD, Lee FYF, Fairchild CR, Long BH, Vite GD (2002) SAR and pH stability of cyano-substituted epothilones. Org Lett 4: 3815–3818. doi: 10.1021/ol026589j PubMedCrossRefGoogle Scholar
  45. 45.
    Regueiro-Ren A, Borzilleri RM, Zheng X, Kim SH, Johnson JA, Fairchild CR, Lee FY, Long BH, Vite GD (2001) Synthesis and biological activity of novel epothilone aziridines. Org Lett 3: 2693–2696. doi: 10.1021/ol016273w PubMedCrossRefGoogle Scholar
  46. 46.
    Glunz PW, He L, Horwitz SB, Chakravarty S, Ojima I, Chou TC, Danishefsky SJ (1999) The synthesis and evaluation of 12,13-benzodesoxyepothilone B: a highly convergent route. Tetrahedron Lett 40: 6895–6898. doi: 10.1016/S0040-4039(99)01433-1 CrossRefGoogle Scholar
  47. 47.
    Sefkow M, Kiffe M, Schummer D, Höfle G (1998) Oxidative and reductive transformations of epothilone A. Bioorg Med Chem Lett 8: 3025–3030. doi: 10.1016/S0960-894X(98)00545-9 PubMedCrossRefGoogle Scholar
  48. 48.
    Pfeiffer B, Hauenstein K, Merz P, Gertsch J, Altmann K-H (2009) Synthesis and SAR of C12–C13-oxazoline derivatives of epothilone A. Bioorg Med Chem Lett 19: 3760–3763. doi: 10.1016/j.bmcl.2009.04.112 PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson J, Kim SH, Bifano M, DiMarco J, Fairchild C, Gougoutas J, Lee F, Long B, Tokarski J, Vite GD (2000) Synthesis, structure proof, and biological activity of epothilone cyclopropanes. Org Lett 2: 1537–1540. doi: 10.1021/ol0058240 PubMedCrossRefGoogle Scholar
  50. 50.
    Su DS, Balog A, Meng D, Bertinato P, Danishefsky SJ, Zheng YH, Chou TC, He L, Horwitz SB (1997) Structure-activity relationships of the epothilones and the first in vivo comparison with paclitaxel. Angew Chem Int Ed 36: 2093–2096. doi: 10.1002/anie.199720931 CrossRefGoogle Scholar
  51. 51.
    Meng D, Su DS, Balog A, Bertinato P, Sorensen EJ, Danishefsky SJ, Zheng YH, Chou T-C, He L, Horwitz SB (1997) Remote effects in macrolide formation through ring-forming metathesis: an application to the synthesis of fully active epothilone congeners. J Am Chem Soc 119: 2733–2734. doi: 10.1021/ja964275j CrossRefGoogle Scholar
  52. 52.
    Su DS, Meng D, Bertinato P, Balog A, Sorensen EJ, Danishefsky SJ, Zheng YH, Chou T-C, He L, Horwitz SB (1997) Total synthesis of (-)-epothilone B: an extension of the Suzuki coupling method and insights into structure-activity relationships of the epothilones. Angew Chem Int Ed 36: 757–759. doi: 10.1002/anie.199707571 CrossRefGoogle Scholar
  53. 53.
    Nicolaou KC, Winssinger N, Pastor J, Ninkovic S, Sarabia F, He Y, Vourloumis D, Yang Z, Li T, Giannakakou P, Hamel E (1997) Synthesis of epothilones A and B in solid and solution phase. Nature 387: 268–272. doi: 10.1038/387268a0 PubMedCrossRefGoogle Scholar
  54. 54.
    Chou TC, Zhang XG, Balog A, Su DS, Meng D, Savin K, Bertino JR, Danishefsky SJ (1998) Desoxyepothilone B: an efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc Natl Acad Sci USA 95: 9642–9647. doi: 10.1073/pnas.95.16.9642 PubMedCrossRefGoogle Scholar
  55. 55.
    Lichtner RB, Rotgeri A, Bunte T, Buchmann B, Hoffmann J, Schwede W, Skuballa W, Klar U (2001) Subcellular distribution of epothilones in human tumor cells. Proc Natl Acad Sci USA 98: 11743–11748. doi: 10.1073/pnas.171023398 PubMedCrossRefGoogle Scholar
  56. 56.
    Buey RM, Diaz JF, Andreu JM, O’Brate A, Giannakakou P, Nicolaou KC, Sasmal PK, Ritzén A, Namoto K (2004) Interactions of epothilone analogs with the paclitaxel binding site: relationship between binding affinity, microtubule stabilization, and cytotoxicity. Chem Biol 11: 225–236. doi: 10.1016/j.chembiol.2004.01.014 PubMedGoogle Scholar
  57. 57.
  58. 58.
    Niggemann J, Michaelis K, Frank R, Zander N, Höfle G (2002) Natural product-derived building blocks for combinatorial synthesis. Part 1. Fragmentation of natural products from myxobacteria. JCS Perkin Trans 1: 2490–2503. doi: 10.1039/b206953a CrossRefGoogle Scholar
  59. 59.
    Borzilleri RM, Zheng X, Schmidt RJ, Johnson JA, Kim SH, DiMarco JD, Fairchild CR, Gougoutas JZ, Lee FYF, Long BH, Vite GD (2000) A novel application of a Pd(0)-catalyzed nucleophilic substitution reaction to the regio- and stereoselective synthesis of lactam analogues of the epothilone natural products. J Am Chem Soc 122: 8890–8897. doi: 10.1021/ja001899n CrossRefGoogle Scholar
  60. 60.
    Schinzer D, Altmann K-H, Stuhlmann F, Bauer A, Wartmann M (2000) Synthesis and biological evaluation of aza-epothilones. ChemBioChem 1: 67–70. doi: 10.1002/1439-7633(20000703)1:1<67::AID-CBIC67>3.0.CO;2-I PubMedCrossRefGoogle Scholar
  61. 61.
    Stachel SJ, Lee CB, Spassova M, Chappell MD, Bornmann WG, Danishefsky SJ, Chou T-C, Guan Y (2001) On the interactivity of complex synthesis and tumor pharmacology in the drug discovery process: total synthesis and comparative in vivo evaluations of the 15-Aza epothilones. J Org Chem 66: 4369–4378. doi: 10.1021/jo010275c PubMedCrossRefGoogle Scholar
  62. 62.
    Lee FY, Borzilleri R, Fairchild CR, Kim SH, Long BH, Reventos-Suarez C, Vite GD, Rose WC, Kramer RA (2001) BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7: 1429–1437PubMedGoogle Scholar
  63. 63.
    Höfle G, Glaser N, Kiffe M, Hecht H-J, Sasse F, Reichenbach H (1999) N-oxidation of epothilone A-C and O-acyl rearrangement to C-19- and C21-substituted epothilones. Angew Chem Int Ed 38: 1971–1974. doi: 10.1002/(SICI)1521-3773(19990712)38:13/14<1971::AID-ANIE1971>3.0.CO;2-X CrossRefGoogle Scholar
  64. 64.
    Sefkow M, Höfle G (1998) Substitutions at the thiazole moiety of epothilone. Heterocycles 48: 2485–2488. doi: 10.3987/COM-98-8351 CrossRefGoogle Scholar
  65. 65.
    Huisgen R, Kolbeck W (1965) N-Acyloxyammonium salts. Tetrahedron Lett 6: 783–787. doi: 10.1016/S0040-4039(01)83985-X CrossRefGoogle Scholar
  66. 66.
    Höfle G, Glaser N, Leibold T, Karama U, Sasse F, Steinmetz H (2003) Semisynthesis and degradation of the tubulin inhibitors epothilone and tubulysin. Pure Appl Chem 75: 167–178. doi: 10.1351/pac200375020167 CrossRefGoogle Scholar
  67. 67.
    Höfle G, Glaser N, Leibold T (2000) Synthesis and cytotoxicity of C-21 modified epothilones. Ger Offen DE 19907588Google Scholar
  68. 68.
    Uyar D, Takigawa N, Mekhail T, Grabowski D, Markman M, Lee F, Canetta R, Peck R, Bukowski R, Ganapathi R (2003) Apoptotic pathways of epothilone BMS 310705. Gynecol Oncol 91: 173–178. doi: 10.1016/S0090-8258(03)00481-5 PubMedCrossRefGoogle Scholar
  69. 69.
    Wartmann M, Loretan J, Reuter R, Hattenberger M, Muller M, Vaxelaire J, Maira S-M, Flörsheimer A, O’Reilly T, Nicolaou KC, Altmann K-H (2004) Preclinical pharmacological profile of ABJ879, a novel epothilone B analog with potent and protracted anti-tumor activity. Proceedings of the American Association for Cancer Research 45. Abstract #5440Google Scholar
  70. 70.
  71. 71.
    Höfle G, Glaser N, Leibold T, Sefkow M (1999) Epothilone A-D and their thiazole-modified analogs as novel anticancer agents. Pure Appl Chem 71:2019–2024. doi: 10.1351./pac199971112019. See also: Glaser N (2001) Semisynthese Seitenketten-Modifizierter Epothilone. Doctoral Thesis, Technical University of Braunschweig.
  72. 72.
    Altmann K-H, Blommers MJJ, Caravatti G, Flörsheimer A, Nicolaou KC, OReilly T, Schmidt A, Schinzer D, Wartmann M (2001) Synthetic and semisynthetic analogs of epothilones: chemistry and biological activity. In: Ojima I, Vite GD, Altmann K-H (eds): Anticancer agents—frontiers in cancer chemotherapy. ACS Symposium Series 796. American Chemical Society, Washington, pp 112–130. doi: 10.1021/bk-2001-0796.ch007
  73. 73.
    Karama U, Höfle G (2003) Synthesis of epothilone 16,17-alkyne analogs by replacement of the C13-C15(O)-ring segment of natural epothilone C. Eur J Org Chem: 1042–1049. doi: 10.1002/ejoc.200390146
  74. 74.
    Dong SD, Sundermann K, Smith KMJ, Petryka J, Liu F, Myles DC (2004) Rapid access to epothilone analogs via semisynthetic degradation and reconstruction of epothilone D. Tetrahedron Lett 45: 1945–1947. doi: 10.1016/j.tetlet.2003.12.123 CrossRefGoogle Scholar
  75. 75.
    Klar U, Buchmann B, Schwede W, Skuballa W, Hoffmann J, Lichtner RB (2006) Total synthesis and antitumor activity of ZK-EPO: The first fully synthetic epothilone in clinical development. Angew Chem Int Ed 45: 7942–7948. doi: 10.1002/anie.200602785 CrossRefGoogle Scholar
  76. 76.
    Feyen F, Cachoux F, Gertsch J, Wartmann M, Altmann K-H (2008) Epothilones as Lead Structures for the Synthesis-Based Discovery of New Chemotypes for Microtubule Stabilization. Acc Chem Res 41: 21–31. doi: 10.1021/ar700157x PubMedCrossRefGoogle Scholar
  77. 77.
    Rivkin A, Yoshimura F, Gabarda AE, Cho YS, Chou T-C, Dong H, Danishefsky SJ (2004) Discovery of (E)-9,10-dehydroepothilones through chemical synthesis: on the emergence of 26-trifluoro-(E)-9,10-dehydro-12,13-desoxyepothilone B as a promising anticancer drug candidate. J Am Chem Soc 126:10913–10922. doi: 10.1021/ja046992gx Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Karl-Heinz Altmann
    • 1
    Email author
  • Fabienne Z. Gaugaz
    • 2
  • Raphael Schiess
    • 2
  1. 1.Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZürichZürichSwitzerland
  2. 2.Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) ZürichZürichSwitzerland

Personalised recommendations