Molecular Diversity

, Volume 15, Issue 2, pp 467–476 | Cite as

Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse

  • Barun BhhataraiEmail author
  • Paola GramaticaEmail author
Full-Length Paper


Quantitative structure-activity relationship (QSAR) analyses were performed using the LD50 oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD50 oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC50 rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.


Perfluorinated chemicals Oral LD50 QSAR Toxicity Rodents REACH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11030_2010_9268_MOESM1_ESM.pdf (147 kb)
ESM 1 (PDF 148 kb)
11030_2010_9268_MOESM2_ESM.pdf (136 kb)
ESM 2 (PDF 136 kb)
11030_2010_9268_MOESM3_ESM.pdf (34 kb)
ESM 3 (PDF 35 kb)
11030_2010_9268_MOESM4_ESM.doc (283 kb)
ESM 4 (DOC 283 kb)


  1. 1.
    US-EPA, Accessed 26 Apr 2010
  2. 2.
    Canadian-DSL, Accessed 26 Apr 2010
  3. 3.
  4. 4.
    Bhhatarai B, Gramatica P (2010) Per- and poly-fluoro toxicity (LC50 inhalation) study in rat and mouse using QSAR modeling. Chem Res Toxicol 23: 528–539. doi: 10.1021/tx900252h PubMedCrossRefGoogle Scholar
  5. 5.
    Oberg T (2004) Boiling points of halogenated aliphatic compounds: a quantitative structure–property relationship for prediction and validation. J Chem Inf Comput Sci 44: 187–192. doi: 10.1021/ci034183v PubMedGoogle Scholar
  6. 6.
    Tetko IV, Sushko I, Pandey AK, Zhu H, Tropsha A, Papa E, Oberg T, Todeschini R, Fourches D, Varnek A (2008) Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J Chem Inf Model 48: 1733–1746. doi: 10.1021/ci800151m PubMedCrossRefGoogle Scholar
  7. 7.
    Kubinyi H, (ed) (1993) 3D QSAR in drug design, vol 1. In: Theory methods and applications (Three-dimensional quantitative structure activity relationships). Springer, BerlinGoogle Scholar
  8. 8.
    Bhhatarai B, Garg R (2005) From SAR to comparative QSAR: role of hydrophobicity in the design of 4-hydroxy-5,6-dihydro pyranone HIV-1 protease inhibitors. Bioorg Med Chem 13: 4078–4084. doi: 10.1016/j.bmc.2005.03.049 PubMedCrossRefGoogle Scholar
  9. 9.
    Enoch SJ, Cronin MTD, Madden JC, Hewitt M (2009) Formation of Structural Categories to Allow for Read-Across for Teratogenicity. QSAR Comb Sci 28: 696–708. doi: 10.1002/qsar.200960011 CrossRefGoogle Scholar
  10. 10.
    Gramatica P, Papa E (2007) Screening and ranking of POPs for global half-life: a QSAR approach for prioritization. Environ Sci Technol 41: 2833–2839. doi: 10.1021/es061773b PubMedCrossRefGoogle Scholar
  11. 11.
    Papa E, Gramatica P (2010) QSPR as a support for the EU REACH regulation and rational design of environmentally safer chemicals: PBT identification from molecular structure. Green Chem 12: 836–843. doi: 10.1039/b923843c CrossRefGoogle Scholar
  12. 12.
    Cronin MTD, Aptula AO, Duffy JC, Netzeva TI, Rowe PH, Valkova IV, Schultz TW (2002) Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 49: 1201–1221. doi: 10.1016/S0045-6535(02)00508-8 PubMedCrossRefGoogle Scholar
  13. 13.
    Matthews EJ, Kruhlak NL, Benz RD, Ivanov J, Klopman G, Contrera JF (2007) A comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to predict activities of untested chemicals. Regul Toxicol Pharmacol 47: 136–155. doi: 10.1016/j.yrtph.2006.10.001 PubMedCrossRefGoogle Scholar
  14. 14.
    EU FP7 project CADASTER, Accessed 26 Apr 2010
  15. 15.
    Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40: 32–44. doi: 10.1021/es0512475 PubMedCrossRefGoogle Scholar
  16. 16.
    Holzapfel W (1966) Uses of fluorinated surfactants. Fette Seifen Anstrichm 68: 837–842Google Scholar
  17. 17.
    Gottschall N, Topp E, Edwards M, Russell P, Payne M, Kleywegt S, Curnoe W, Lapen DR (2010) Polybrominated diphenyl ethers, perfluorinated alkylated substances, and metals in tile drainage and groundwater following applications of municipal biosolids to agricultural fields. Sci Total Environ 408: 873–883. doi: 10.1016/j.scitotenv.2009.10.063 PubMedCrossRefGoogle Scholar
  18. 18.
    UNEP 2007. POPRC3: development of risk management evaluation. UNEP/POPS/POPRC.3/20. Accessed 26 Apr 2010
  19. 19.
    Harada KH, Koizumi A (2009) Environmental and biological monitoring of persistent fluorinated compounds in Japan and their toxicities. Environ Health Prev Med 14: 7–19. doi: 10.1007/s12199-008-0058-5 PubMedCrossRefGoogle Scholar
  20. 20.
    Poulsen PB, Jensen AA, Wallstrom E (2005) More environmentally friendly alternatives to PFOS-compounds and PFOA. Environmental Project No. 1013. Danish Environmental Protection Agency, Copenhagen, DenmarkGoogle Scholar
  21. 21.
    Hekster FM, Laane RW, de Voogt P (2003) Environmental and toxicity effects of perfluoroalkylated substances. Rev Environ Contam Toxicol 179: 99–121. doi: 10.1007/b97458 PubMedCrossRefGoogle Scholar
  22. 22.
    Sanderson H, Boudreau TM, Mabury SA, Solomon KR (2003) Impact of perfluorooctanoic acid on the structure of the zooplankton community in indoor microcosms. Aquat Toxicol 62: 227–234. doi: 10.1016/S0166-445x(02)00100-5 PubMedCrossRefGoogle Scholar
  23. 23.
    Haukas M, Berger U, Hop H, Gulliksen B, Gabrielsen GW (2007) Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ Pollut 148: 360–371. doi: 10.1016/j.envpol.2006.09.021 PubMedCrossRefGoogle Scholar
  24. 24.
    Renner R (2003) Concerns over common perfluorinated surfactant. Environ Sci Technol 37: 201A. doi: 10.1021/es032467q PubMedCrossRefGoogle Scholar
  25. 25.
    Kelly BC, Ikonomou MG, Blair JD, Surridge B, Hoover D, Grace R, Gobas FA (2009) Perfluoroalkyl contaminants in an Arctic marine food web: trophic magnification and wildlife exposure. Environ Sci Technol 43: 4037–4043. doi: 10.1021/es9003894 PubMedCrossRefGoogle Scholar
  26. 26.
    Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35: 1339–1342. doi: 10.1021/es001834k PubMedCrossRefGoogle Scholar
  27. 27.
    McLachlan MS, Holmstrom KE, Reth M, Berger U (2007) Riverine discharge of perfluorinated carboxylates from the European continent. Environ Sci Technol 41: 7260–7265. doi: 10.1021/es071471p PubMedCrossRefGoogle Scholar
  28. 28.
    Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42: 995–1003. doi: 10.1021/es070895g PubMedCrossRefGoogle Scholar
  29. 29.
    Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DC (2006) Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol 40: 3463–3473. doi: 10.1021/es052580b PubMedCrossRefGoogle Scholar
  30. 30.
    Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99: 366–394. doi: 10.1093/toxsci/kfm128 PubMedCrossRefGoogle Scholar
  31. 31.
    Mundt DJ, Mundt KA, Luippold RS, Schmidt MD, Farr CH (2007) Clinical epidemiological study of employees exposed to surfactant blend containing perfluorononanoic acid. Occup Environ Med 64: 589–594. doi: 10.1136/oem.2007.032664 PubMedCrossRefGoogle Scholar
  32. 32.
    Butenhoff JL, Gaylor DW, Moore JA, Olsen GW, Rodricks J, Mandel JH, Zobel LR (2004) Characterization of risk for general population exposure to perfluorooctanoate. Regul Toxicol Pharmacol 39: 363–380. doi: 10.1016/j.yrtph.2004.03.003 PubMedCrossRefGoogle Scholar
  33. 33.
    Kleszczynski K, Gardzielewski P, Mulkiewicz E, Stepnowski P, Składanowski AC (2007) Analysis of structure–cytotoxicity in vitro relationship (SAR) for perfluorinated carboxylic acids. Toxicol In Vitro 21: 1206–1211. doi: 10.1016/j.tiv.2007.04.020 PubMedCrossRefGoogle Scholar
  34. 34.
    Alexander BH, Olsen GW, Burris JM, Mandel JH, Mandel JS (2003) Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med 60: 722–729. doi: 10.1136/oem.60.10.722 PubMedCrossRefGoogle Scholar
  35. 35.
    US EPA 2000. Perfluorooctyl sulfonates; proposed significant new use rule. Federal Register 65:62319–62333Google Scholar
  36. 36.
    Perfluorooctanoic Acid (PFOA) and Fluorinated Telomers. Accessed 26 Apr 2010
  37. 37.
    European Chemical Agency. Accessed 26 Apr 2010
  38. 38.
    ChemID Plus. Accessed 26 Apr 2010
  39. 39.
    Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28: 31–36. doi: 10.1021/ci00057a005 Google Scholar
  40. 40.
    Hyperchem, 7.03, (2002) Hypercube Inc., Florida USA.
  41. 41.
    Todeschini R, Consonni V, Mauri A, Pavan M (2007) DRAGON v.5 Talete srl. Milan, Italy.
  42. 42.
    Todeschini R, Consonni V (2009) Handbook of molecular descriptors. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  43. 43.
    Leardi R, Boggia R, Terrile M (1992) Genetic Algorithms as a strategy for feature selection. J Chemometr 6: 267–281. doi: 10.1002/cem.1180060506 CrossRefGoogle Scholar
  44. 44.
    Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26: 694–701. doi: 10.1002/qsar.200610151 CrossRefGoogle Scholar
  45. 45.
    Todeschini R, Consonni V, Pavan M (2002) MOBY DIGS - Software for multilinear regression analysis and variable subset selection by genetic algorithm. Ver. 1.2 for Windows. Talete srl, Milan, ItalyGoogle Scholar
  46. 46.
    Gramatica P, Pilutti P, Papa E (2004) Validated QSAR prediction of OH tropospheric degradability: splitting into training-test set and consensus modeling. J Chem Inf Comput Sci 44: 1794–1802. doi: 10.1021/ci049923u PubMedGoogle Scholar
  47. 47.
    Consonni V, Ballabio D, Todeschini R (2009) Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model 49: 1669–1678. doi: 10.1021/ci900115y PubMedCrossRefGoogle Scholar
  48. 48.
    Todeschini R, Consonni V, Maiocchi A (1999) The K correlation index: theory development and its application in chemometrics. Chemom Int Lab Syst 46: 13–29. doi: 10.1016/S0169-7439(98)00124-5 CrossRefGoogle Scholar
  49. 49.
    Gramatica P, Giani E, Papa E (2007) Statistical external validation and consensus modeling: A QSPR case study for Koc prediction. J Mol Graph Model 25: 755–766. doi: 10.1016/j.jmgm.2006.06.005 PubMedCrossRefGoogle Scholar
  50. 50.
    OECD Guidelines. Accessed 26 Apr 2010
  51. 51.
    Consonni V, Todeschini R, Pavan M (2002) Structure/Response Correlations and Similarity/Diversity Analysis by GETAWAY Descriptors. Part 1. Theory of the Novel 3D Molecular Descriptors. J Chem Inf Comput Sci 42: 682–692. doi: 10.1021/ci015504a PubMedGoogle Scholar
  52. 52.
    Todeschini R, Gramatica P (1997) 3D-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of the WHIM descriptors. Quant Struct –Act Relat 16: 113–119. doi: 10.1002/qsar.19970160203 CrossRefGoogle Scholar
  53. 53.
    Martin JW, Mabury SA, Solomon KR, Muir DCG (2003) Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus Mykiss). Environ Toxicol Chem 22: 196–204. doi: 10.1002/etc.5620220126 PubMedGoogle Scholar
  54. 54.
    Tolls J, Sijm DTHM (1995) A preliminary evaluation of the relationship between bioconcentration and hydrophobicity for surfactants. Environ Toxicol Chem 14: 1675–1685. doi: 10.1002/etc.5620141007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Structural and Functional Biology (DBSF)University of InsubriaVareseItaly

Personalised recommendations