Molecular Diversity

, Volume 15, Issue 1, pp 173–188 | Cite as

Estimating persistence of brominated and chlorinated organic pollutants in air, water, soil, and sediments with the QSPR-based classification scheme

  • T. PuzynEmail author
  • M. Haranczyk
  • N. Suzuki
  • T. Sakurai
Full-Length Paper


We have estimated degradation half-lives of both brominated and chlorinated dibenzo-p-dioxins (PBDDs and PCDDs), furans (PBDFs and PCDFs), biphenyls (PBBs and PCBs), naphthalenes (PBNs and PCNs), diphenyl ethers (PBDEs and PCDEs) as well as selected unsubstituted polycyclic aromatic hydrocarbons (PAHs) in air, surface water, surface soil, and sediments (in total of 1,431 compounds in four compartments). Next, we compared the persistence between chloro- (relatively well-studied) and bromo- (less studied) analogs. The predictions have been performed based on the quantitative structure-property relationship (QSPR) scheme with use of k-nearest neighbors (kNN) classifier and the semi-quantitative system of persistence classes. The classification models utilized principal components derived from the principal component analysis of a set of 24 constitutional and quantum mechanical descriptors as input variables. Accuracies of classification (based on an external validation) were 86, 85, 87, and 75% for air, surface water, surface soil, and sediments, respectively. The persistence of all chlorinated species increased with increasing halogenation degree. In the case of brominated organic pollutants (Br-OPs), the trend was the same for air and sediments. However, we noticed that the opposite trend for persistence in surface water and soil. The results suggest that, due to high photoreactivity of C–Br chemical bonds, photolytic processes occurring in surface water and soil are able to play significant role in transforming and removing Br-OPs from these compartments. This contribution is the first attempt of classifying together Br-OPs and Cl-OPs according to their persistence, in particular, environmental compartments.


Brominated organic pollutants Half-lives QSPR kNN Class of persistence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11030_2010_9250_MOESM1_ESM.xls (2.5 mb)
ESM 1 (XLS 2,543 kb)


  1. 1.
    Puzyn T, Mostrag A, Falandysz J, Kholod Y, Leszczynski J (2009) Predicting water solubility of congeners: chloronaphthalenes—a case study. J Hazard Mater 170: 1014–1022. doi: 10.1016/j.jhazmat.2009.05.079 PubMedCrossRefGoogle Scholar
  2. 2.
    Mostrag A, Puzyn T, Haranczyk M (2010) Modeling the overall persistence and environmental mobility of sulfur-containing polychlorinated organic pollutants. Environ Sci Pollut Res 17: 470–477. doi: 10.1007/s11356-009-0257-7 CrossRefGoogle Scholar
  3. 3.
    Choi JW, Fujimaki TS, Kitamura K, Hashimoto S, Ito H, Suzuki N, Sakai S, Morita M (2003) Polybrominated dibenzo-p-dioxins, dibenzofurans, and diphenyl ethers in Japanese human adipose tissue. Environ Sci Technol 37: 817–821. doi: 10.1021/es0258780 PubMedCrossRefGoogle Scholar
  4. 4.
    Covaci A, Voorspoels S, Vetter W, Gelbin A, Jorens PG, Blust R, Neels H (2007) Anthropogenic and naturally occurring organobrominated compounds in fish oil dietary supplements. Environ Sci Technol 41: 5237–5244. doi: 10.1021/es070239g PubMedCrossRefGoogle Scholar
  5. 5.
    Gouin T, Harner T (2003) Modelling the environmental fate of the polybrominated diphenyl ethers. Environ Int 29: 717–724. doi: 10.1016/S0160-4120(03)00116-8 PubMedCrossRefGoogle Scholar
  6. 6.
    Wania F, Dugani CB (2003) Assessing the long-range transport potential of polybrominated diphenyl ethers: a comparison of four multimedia models. Environ Toxicol Chem 22: 1252–1261. doi: 10.1897/1551-5028(2003)022<1252:ATLRTP>2.0.CO;2 PubMedCrossRefGoogle Scholar
  7. 7.
    Puzyn T, Suzuki N, Haranczyk M (2008) How do the partitioning properties of polyhalogenated POPs change when chlorine is replaced with bromine?. Environ Sci Technol 42: 5189–5195. doi: 10.1021/es8002348 PubMedCrossRefGoogle Scholar
  8. 8.
    Fang L, Huang J, Yu G, Wang L (2008) Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane. Chemosphere 71: 258–267. doi: 10.1016/J.Chemosphere.2007.09.041 PubMedCrossRefGoogle Scholar
  9. 9.
    Mackay D, Shiu WY, Ma K-C, Lee SC (2007) Handbook of physical–chemical properties and environmental fate for organic chemicals. Taylor & Francis, Boca Raton, London. ISBN: 1-56670-687-4Google Scholar
  10. 10.
    Roy K (2006) Ecotoxicological modeling and risk assessment using chemometric tools. Mol Divers 10: 93–94. doi: 10.1007/s11030-006-9025-5 PubMedCrossRefGoogle Scholar
  11. 11.
    EPISuiteTM (2008) US Environmental Protection Agency. Available via Accessed 15 July 2008
  12. 12.
    Papa E, Gramatica P (2008) Screening of persistent organic pollutants by QSPR classification models: a comparative study. J Mol Graph Model 27: 59–65. doi: 10.1016/j.jmgm.2008.02.004 PubMedCrossRefGoogle Scholar
  13. 13.
    Papa E, Gramatica P (2008) Externally validated QSPR modelling of VOC tropospheric oxidation by NO 3 radicals. SAR QSAR Environ Res 19: 655–668. doi: 10.1080/10629360802550697 PubMedCrossRefGoogle Scholar
  14. 14.
    Gramatica P, Pilutti P, Papa E (2004) Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training-test sets and consensus modeling. J Chem Inf Comp Sci 44: 1794–1802. doi: 10.1021/Ci049923u Google Scholar
  15. 15.
    OECD (2004) Guidance document on the use of multimedia models for estimating overall environmental persistence and long-range transport. Series on Testing and Assessment 45. OECD Environment, Health and Safety Publications, ParisGoogle Scholar
  16. 16.
    OECD (2002) Report of the OECD/UNEP workshop on the use of multimedia models for estimation overall environmental persistence and long-range transport in the context of PBTs/POPs assessment. Series on Risk Management 36. OECD Environment, Health and Safety Publications, ParisGoogle Scholar
  17. 17.
    Kühne R, Ebert RU, Schüürmann G (2007) Estimation of compartmental half-lives of organic compounds: structural similarity versus EPI-suite. QSAR Comb Sci 26: 542–549. doi: 10.1002/Qsar.200610121 CrossRefGoogle Scholar
  18. 18.
    Ivanciuc T, Ivanciuc O, Klein DJ (2006) Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-structure/activity relationships (QSSAR). Mol Divers 10: 133–145. doi: 10.1007/s11030-005-9003-3 PubMedCrossRefGoogle Scholar
  19. 19.
    Gonzalez MP, Helguera AM, Collado IG (2006) A topological substructural molecular design to predict soil sorption coefficients for pesticides. Mol Divers 10: 109–118. doi: 10.1007/s11030-005-9004-2 PubMedCrossRefGoogle Scholar
  20. 20.
    Raff JD, Hites RA (2006) Gas-phase reactions of brominated diphenyl ethers with OH radicals. J Phys Chem A 110: 10783–10792. doi: 10.1021/Jp0630222 PubMedCrossRefGoogle Scholar
  21. 21.
    Eriksson J, Green N, Marsh G, Bergman A (2004) Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water. Environ Sci Technol 38: 3119–3125. doi: 10.1021/Es049830t PubMedCrossRefGoogle Scholar
  22. 22.
    Kuivikko M, Kotiaho T, Hartonen K, Tanskanen A, Vahatalo AV (2007) Modeled direct photolytic decomposition of polybrominated diphenyl ethers in the Baltic sea and the Atlantic ocean. Environ Sci Technol 41: 7016–7021. doi: 10.1021/Es070422+ PubMedCrossRefGoogle Scholar
  23. 23.
    Chatkittikunwong W, Creaser CS (1994) Bromo-dibenzo-p-dioxins, bromochloro-dibenzo-p-dioxins and chloro-dibenzo- p-dioxins and dibenzofurans in incinerator fly-ash. Chemosphere 29: 559–566. doi: 10.1016/0045-6535(94)90443-X CrossRefGoogle Scholar
  24. 24.
    Söderström G, Sellström U, De Wit CA, Tysklind M (2004) Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ Sci Technol 38: 127–132. doi: 10.1021/Es034682c PubMedCrossRefGoogle Scholar
  25. 25.
    Selström U, Söderström G, de Wit C, Tysklind M (1998) Photolytic debromination of decabromodiphenyl ether (DeBDE). Organohalogen Compd 35: 447–450Google Scholar
  26. 26.
    Gerecke AC, Hartmann PC, Heeb NV, Kohler HPE, Giger W, Schmid P, Zennegg M, Kohler M (2005) Anaerobic degradation of decabromodiphenyl ether. Environ Sci Technol 39: 1078–1083. doi: 10.1021/Es048634j PubMedCrossRefGoogle Scholar
  27. 27.
    Stewart JJP (2007) Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J Mol Model 13: 1173–1213. doi: 10.1007/s00894-007-0233-4 PubMedCrossRefGoogle Scholar
  28. 28.
    MOPAC2007, ver. 7.065W. Stewart Computational Chemistry. Available via Accessed 15 January 2008
  29. 29.
    Puzyn T, Suzuki N, Haranczyk M, Rak J (2008) Calculation of quantum-mechanical descriptors for QSPR at the DFT level: is it necessary?. J Chem Inf Model 48: 1174–1180. doi: 10.1021/ci800021p PubMedCrossRefGoogle Scholar
  30. 30.
    Eriksson L, Andersson PL, Johansson E, Tysklind M (2006) Megavariate analysis of environmental QSAR data: part II—investigating very complex problem formulations using hierarchical, non-linear and batch-wise extensions of PCA and PLS. Mol Divers 10: 187–205. doi: 10.1007/s11030-006-9026-4 PubMedCrossRefGoogle Scholar
  31. 31.
    Eriksson L, Andersson PL, Johansson E, Tysklind M (2006) Megavariate analysis of environmental QSAR data: part I—a basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol Divers 10: 169–186. doi: 10.1007/s11030-006-9024-6 PubMedCrossRefGoogle Scholar
  32. 32.
    OECD (2007) Guidance document on the validation of (Quantitative) structure activity relationship [(Q)SAR] models. OECD Series on Testing and Assessment. Organisation of Economic Cooperation and Development, Paris, FranceGoogle Scholar
  33. 33.
    Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26: 694–701. doi: 10.1002/qsar.200610151 CrossRefGoogle Scholar
  34. 34.
    Dearden JC, Cronin MT, Kaiser KL (2009) How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 20: 241–266. doi: 10.1080/10629360902949567 PubMedCrossRefGoogle Scholar
  35. 35.
    Bailey RA, Clark HM, Ferris JP, Krause S, Strong RL (2002) Chemistry of the environment. Elsevier/Academic Press, Oxford. ISBN: 0-12-073461-3Google Scholar
  36. 36.
    Wang XS, Tang H, Golbraikh A, Tropsha A (2008) Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F. J Chem Inf Model 48: 997–1013. doi: 10.1021/Ci700404c PubMedCrossRefGoogle Scholar
  37. 37.
    Mazerski J (2009) Chemometria Praktyczna. Wydawnictwo Malamut, Warsaw (in Polish)Google Scholar
  38. 38.
    Puzyn T, Falandysz J (2007) QSPR modeling of partition coefficients and Henry’s law constants for 75 chloronaphthalene congeners by means of six chemometric approaches: a comparative study. J Phys Chem Ref Data 36: 203–214. doi: 10.1063/1.2432888 CrossRefGoogle Scholar
  39. 39.
    Puzyn T, Falandysz J (2007) Application and comparison of different chemometric approaches in QSPR modelling of supercooled liquid vapour pressures for chloronaphthalenes. SAR QSAR Environ Res 18: 299–313. doi: 10.1080/10629360701303875 PubMedCrossRefGoogle Scholar
  40. 40.
    Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36: 255–263. doi: 10.1021/ar020230d PubMedCrossRefGoogle Scholar
  41. 41.
    Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester. ISBN: 0471980854Google Scholar
  42. 42.
    Puzyn T, Falandysz J, Jones PD, Giesy JP (2007) Quantitative structure-activity relationships for the prediction of relative in vitro potencies (REPs) for chloronaphthalenes. J Environ Sci Heal A 42: 573–590. doi: 10.1080/10934520701244326 CrossRefGoogle Scholar
  43. 43.
    Haranczyk M, Puzyn T, Sadowski P (2008) ConGENER: a tool for modeling of the congeneric sets of environmental pollutants. QSAR Comb Sci 27: 826–833. doi: 10.1002/qsar.200710149 CrossRefGoogle Scholar
  44. 44.
    Taylor PH, Yamada T, Neuforth A (2005) Kinetics of OH radical reactions with dibenzo-p-dioxin and selected chlorinated dibenzo-p-dioxins. Chemosphere 58: 243–252. doi: 10.1016/j.chemosphere.2004.07.054 PubMedCrossRefGoogle Scholar
  45. 45.
    Puzyn T, Mostraąg A, Suzuki N, Falandysz J (2008) QSPR-based estimation of the atmospheric persistence for chloronaphthalene congeners. Atmos Environ 42: 6627–6636. doi: 10.1016/j.atmosenv.2008.04.048 CrossRefGoogle Scholar
  46. 46.
    Gramatica P, Pilutti P, Papa E (2004) Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training-test sets and consensus modeling. J Chem Inf Comput Sci 44: 1794–1802. doi: 10.1021/Ci049923u PubMedGoogle Scholar
  47. 47.
    Lee JE, Choi WY, Mhin BJ, Balasubramanian K (2004) Theoretical study on the reaction of OH radicals with polychlorinated dibenzo-p-dioxins. J Phys Chem A 108: 607–614. doi: 10.1021/Jp036084q CrossRefGoogle Scholar
  48. 48.
    Kim MK, O’Keefe PW (2000) Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in aqueous solutions and in organic solvents. Chemosphere 41: 793–800. doi: 10.1016/S0045-6535(99)00564-0 PubMedCrossRefGoogle Scholar
  49. 49.
    Chatkittikunwong W, Creaser CS (1994) Stability of bromo-dibenzo-p-dioxins and bromochloro-dibenzo-p-dioxins under laboratory and environmental conditions. Chemosphere 29: 547–557. doi: 10.1016/0045-6535(94)90442-1 CrossRefGoogle Scholar
  50. 50.
    Rayne S, Wan P, Ikonomou M (2006) Photochemistry of a major commercial polybrominated diphenyl ether flame retardant congener: 2,2′,4,4′,5,5′-hexabromodiphenyl ether (BDE153). Environ Int 32: 575–585. doi: 10.1016/J.Envint.2006.01.009 PubMedCrossRefGoogle Scholar
  51. 51.
    Vonderheide AP, Mueller-Spitz SR, Meija J, Welsh GL, Mueller KE, Kinkle BK, Shann JR, Caruso JA (2006) Rapid breakdown of brominated flame retardants by soil microorganisms. J Anal Atom Spectrom 21: 1232–1239. doi: 10.1039/B607273a CrossRefGoogle Scholar
  52. 52.
    Bedard DL, Van Dort HM (1998) Complete reductive dehalogenation of brominated biphenyls by anaerobic microorganisms in sediment. Appl Environ Microb 64: 940–947Google Scholar
  53. 53.
    Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218: 1115–1117. doi: 10.1126/science.218.4577.1115 PubMedCrossRefGoogle Scholar
  54. 54.
    Shaefer E, Flaggs R (2001) Potential for biotransformation of radiolabeled decabromodiphenyl oxide (DBDPO) in anaerobic sediment. Final Report. Project No: 439E-105. Wildlife International Ltd, Easton, MDGoogle Scholar
  55. 55.
    Tokarz JA, Ahn MY, Leng J, Filley TR, Nies L (2008) Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system. Environ Sci Technol 42: 1157–1164. doi: 10.1021/Es071989t PubMedCrossRefGoogle Scholar
  56. 56.
    Koester CJ, Hites RA (1992) Photodegradation of polychlorinated dioxins and dibenzofurans adsorbed to fly ash. Environ Sci Technol 26: 502–507. doi: 10.1021/es00027a008 CrossRefGoogle Scholar
  57. 57.
    Watanabe I, Sakai S (2003) Environmental release and behavior of brominated flame retardants. Environ Int 29: 665–682. doi: 10.1016/S0160-4120(03)00123-5 PubMedCrossRefGoogle Scholar
  58. 58.
    Rayne S, Ikonomou MG, Whale MD (2003) Anaerobic microbial and photochemical degradation of 4,4′-dibromodiphenyl ether. Water Res 37: 551–560. doi: 10.1016/S0043-1354(02)00311-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of Chemistry, Laboratory of Environmental ChemometricsUniversity of GdańskGdańskPoland
  2. 2.Computational Research DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.National Institute for Environmental Studies, Research Center for Environmental Risk, Exposure Assessment Research SectionTsukubaJapan

Personalised recommendations