Molecular Diversity

, Volume 15, Issue 2, pp 435–444

Predictive models for nucleoside bisubstrate analogs as inhibitors of siderophore biosynthesis in Mycobacterium tuberculosis: pharmacophore mapping and chemometric QSAR study

Full-length paper


Inhibitors of aryl acid adenylating enzymes (AAAE), known as MbtA, involved in siderophore biosynthesis in Mycobacterium tuberculosis, are being explored as potential antitubercular agents. In this article, we report the development of a robust pharmacophore model and investigation of structure–activity relationship of several nucleoside bisubstrate analogs reported as MbtA inhibitors. The developed pharmacophore model revealed the importance of two hydrogen bond donors and one hydrogen bond acceptor features. Furthermore, it was found that an aromatic ring at the distal part of molecule away from the two aromatic rings of adenyl moiety is a critical requirement for the tight binding of inhibitor. The generated pharmacophore-based alignment was used to derive a predictive atom-based 3D-QSAR model for training set (r2 = 0.97, SD = 0.23, F = 310.6, N = 48) and test set (Q2 = 0.71, RMSE = 0.65, Pearson-R = 0.85, N = 15). Structure–activity relationship investigation further revealed that bulky substitutions at the C-6 position of adenyl moiety is detrimental to activity, while hydrophobic substitutions can be tolerated at C-2 position. Taken together, the PLS-generated QSAR regression cubes along with developed pharmacophore model provide a qualitative picture of the active site and can be used as a powerful tool for the rational modification of bisubstrate inhibitors of MbtA in search of better antitubercular agents. Furthermore, a three-class classification chemometric QSAR model was developed using molecular descriptors for the prediction of whole-cell activity which could be used in the predictive layer for screening of compounds before synthesis.


Siderophore Tuberculosis Pharmacophore mapping 3D-QSAR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11030_2010_9243_MOESM1_ESM.doc (622 kb)
ESM 1 (DOC 621 kb)


  1. 1.
    WHO Report (2008) Global tuberculosis control—surveillance, planning, financing.
  2. 2.
    Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC for the WHO Global Surveillance and project monitoring (1999) Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. J Am Med Assoc 282:677–686Google Scholar
  3. 3.
    Murray JF (1998) Tuberculosis and HIV infection: a global perspective. Respiration 65: 335–342PubMedCrossRefGoogle Scholar
  4. 4.
    Zignol M, Hosseini MS, Wright A, Weezenbeek CL, Nunn P, Watt CJ, Williams BG, Dye C (2006) Global incidence of multidrug-resistant tuberculosis. J Infect Dis 194: 479–485. doi:10.1086/505877 PubMedCrossRefGoogle Scholar
  5. 5.
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544. doi:10.1038/31159 PubMedCrossRefGoogle Scholar
  6. 6.
    Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR Jr, Venter JC, Fraser CM (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184: 5479–5490. doi:10.1128/JB.184.19.5479-5490.2002 PubMedCrossRefGoogle Scholar
  7. 7.
    Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100: 3584–3588. doi:10.1073/pnas.0630018100 PubMedCrossRefGoogle Scholar
  8. 8.
    Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54: 881–941. doi:10.1146/annurev.micro.54.1.881 PubMedCrossRefGoogle Scholar
  9. 9.
    Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71: 413–451. doi:10.1128/MMBR.00012-07 PubMedCrossRefGoogle Scholar
  10. 10.
    De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE III (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97: 1252–1257PubMedCrossRefGoogle Scholar
  11. 11.
    Rodriguez GM, Smith I (2006) Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol 188: 424–430. doi:10.1128/JB.188.2.424-430.2006 PubMedCrossRefGoogle Scholar
  12. 12.
    Somu RV, Wilson DJ, Bennett EM, Boshoff HI, Celia L, Beck BJ, Barry CE III, Aldrich CC (2006) Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain. J Med Chem 49: 7623–7635. doi:10.1021/jm061068d PubMedCrossRefGoogle Scholar
  13. 13.
    Ferreras JA, Ryu JS, Di Lello F, Tan DS, Quadri LE (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1: 29–32. doi:10.1038/nchembio706 PubMedCrossRefGoogle Scholar
  14. 14.
    Quadri LEN, Sello J, Keating TA, Weinreb PH, Walsh CT (1998) Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulenceconferring siderophore mycobactin. Chem Biol 5: 631–645. doi:10.1016/S1074-5521(98)90291-5 PubMedCrossRefGoogle Scholar
  15. 15.
    May JJ, Kessler N, Marahiel MA, Stubbs MT (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA 99: 12120–12125. doi:10.1073/pnas.182156699 PubMedCrossRefGoogle Scholar
  16. 16.
    Kim S, Lee SW, Choi E-C, Choi SY (2003) Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics. Appl Microbiol Biotechnol 61: 278–288. doi:10.1007/s00253-003-1243-5 PubMedGoogle Scholar
  17. 17.
    Schimmel P, Tao J, Hill J (1998) Aminoacyl tRNA synthetases as targets for new anti-infectives. FASEB J 12: 1599–1609PubMedGoogle Scholar
  18. 18.
    Somu RV, Boshoff H, Qiao C, Bennett EM, Barry CE III, Aldrich CC (2006) Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J Med Chem 49: 31–34. doi:10.1021/jm051060o PubMedCrossRefGoogle Scholar
  19. 19.
    Neres J, Labello NP, Somu RV, Boshoff HI, Wilson DJ, Vannada J, Chen L, Barry CE III, Bennett EM, Aldrich CC (2008) Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: Structure-activity relationships of the nucleobase domain of 5′-O-[N-(salicyl)sulfamoyl]adenosine. J Med Chem 51: 5349–5370. doi:10.1021/jm800567v PubMedCrossRefGoogle Scholar
  20. 20.
    Gupte A, Boshoff HI, Wilson DJ, Neres J, Labello NP, Somu RV, Xing C, Barry CE III, Aldrich CC (2008) Inhibition of siderophore biosynthesis by 2-triazole substituted analogues of 5′-O-[N-(salicyl)sulfamoyl]adenosine: antibacterial nucleosides effective against Mycobacterium tuberculosis. J Med Chem 51: 7495–7507. doi:10.1021/jm8008037 PubMedCrossRefGoogle Scholar
  21. 21.
    Tawari NR, Degani MS (2010) Pharmacophore mapping and electronic feature analysis for a series of nitroaromatic compounds with antitubercular activity. J Comput Chem 31: 739–751. doi:10.1002/jcc.21371 PubMedGoogle Scholar
  22. 22.
    MarvinSketch version 5.2 ChemAxon Ltd, Máramaros köz 3/a, Budapest, 1037 HungaryGoogle Scholar
  23. 23.
    Phase, version 3.0, Schrödinger, LLC, New York, NY (2008) User manual Google Scholar
  24. 24.
    LigPrep, version 3.0, Schrödinger, LLC, New York, NY (2008) User manual Google Scholar
  25. 25.
    Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Computer-Aided Mol Des 20: 647–671. doi:10.1007/s10822-006-9087-6 CrossRefGoogle Scholar
  26. 26.
    QikProp, version 3.1, Schrödinger, LLC, New York, NY (2008) User manual Google Scholar
  27. 27.
    Stewart JJP (2008) MOPAC2009. Stewart Computational Chemistry, Colorado Springs, CO, USA.
  28. 28.
    SarchitectTM Designer version 2.5, Strand Life Sciences Pvt. Ltd., Bangalore, INDIA (2007) User manual Google Scholar
  29. 29.
    Tawari NR, Bag S, Degani MS (2008) Pharmacophore mapping of a series of pyrrolopyrimidines, indolopyrimidines and their congeners as multidrug-resistance-associated protein (MRP1) modulators. J Mol Mod 14: 911–921. doi:10.1007/s00894-008-0330-z CrossRefGoogle Scholar
  30. 30.
    Brennan P J, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 29–63PubMedCrossRefGoogle Scholar
  31. 31.
    Jorgensen WL, Duffy EM (2000) Prediction of drug solubility from Monte Carlo simulations. Bioorg Med Chem Lett 10: 1155–1158. doi:10.1016/S0960-894X(00)00172-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations