Advertisement

Molecular Diversity

, Volume 14, Issue 3, pp 411–424 | Cite as

Efficiency in chemistry: from hydrogen autotransfer to multicomponent catalysis

  • Francisco Alonso
  • Francisco Foubelo
  • José C. González-Gómez
  • Ricardo Martínez
  • Diego J. Ramón
  • Paola Riente
  • Miguel Yus
Full-Length Paper

Abstract

A hydrogen autotransfer reaction has been applied to the α-alkylation of ketones, with primary alcohols as the electrophilic component, either under homogeneous (using a Ru complex as catalyst) or under heterogeneous (using Ni nanoparticles) conditions. This process is both very efficient (concerning atom economy) and ecologically friendly (water as the only by-product generated). On the other hand, three multicomponent reactions, namely, the Strecker reaction (without any catalyst), the aza-Sakurai process (catalyzed by ferrite), and the addition of in situ generated Zn enolates to chiral sulfinylimines (catalyzed by Cu), have proven to be very efficient in the generation of a diversity of polyfunctionalized molecules.

Keywords

Hydrogen autotransfer Alcohols as electrophiles Atom efficiency processes Multicomponent catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pimentel GC (1985) Opportunities in chemistry. Committee to survey opportunities in the chemical science. National Academy of Science of USA. Available via http://www.nap.edu/openbook.php?record_id=606&page=R1. Accessed 8 Jun 2009
  2. 2.
    European Commission CORDIS. Available via http://cordis.europa.eu/fp7/. Accessed 8 Jun 2009
  3. 3.
    Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 3352–3365. doi: 10.1039/b803584a
  4. 4.
    Gall M, House HO (1988) The formation and alkylation of specific enolate anions from an unsymmetrical ketone: 2-benzyl-2-methylcyclohexanone and 2-benzyl-6-methylcyclohexanone. Org Synth Coll 6: 121–130Google Scholar
  5. 5.
    Negishi E-I, Idacavage MJ, DiPasquale F, Silveira A (1979) A highly selective method for α-alkylation of ketones via potassium enoxytrialkylborates. Tetrahedron Lett 20: 845–848. doi: 10.1016/S0040-4039(01)93567-1 CrossRefGoogle Scholar
  6. 6.
    Stork G, Brizzolara A, Landesman H, Szmuszkovicz J, Terrell R (1963) The enamine alkylation and acylation of carbonyl compounds. J Am Chem Soc 85: 207–222. doi: 10.1021/ja00885a021 CrossRefGoogle Scholar
  7. 7.
    Cainelli GF, Panunzio M, Umani-Ronchi A (1975) Chemistry of alkali metal tetracarbonylferrates. A simple method for alkylating and arylating carbonyl compounds and active methylene compounds. J Chem Soc Perkin Trans 1: 1273–1275. doi: 10.1039/P19750001273 CrossRefGoogle Scholar
  8. 8.
    Guerbet M (1901) Action of normal propyl and butyl alcohols on their respective sodium derivatives: synthesis of dipropyl and dibutyl alcohols. C R Hebd Seances Acad Sci 133: 1220–1222Google Scholar
  9. 9.
    Chabardes P, Querou Y (1969) Alkylation of ketones. French patent assignee to Rhone-Poulenc SA. FR1582621. [(1970) Chem Abstr 73:61760]Google Scholar
  10. 10.
    Guillena G, Ramón DJ, Yus M (2007) Alcohols as electrophiles in C–C bond-forming reactions: the hydrogen autotransfer process. Angew Chem Int Ed 46: 2358–2364. doi: 10.1002/anie.200603794 CrossRefGoogle Scholar
  11. 11.
    Martínez R, Ramón DJ, Yus M (2006) Easy α-alkylation of ketones with alcohols through a hydrogen autotransfer process catalyzed by RuCl2(DMSO)4. Tetrahedron 62: 8988–9001. doi: 10.1016/j.tet.2006.07.013 CrossRefGoogle Scholar
  12. 12.
    Martínez R, Brand GJ, Ramón DJ, Yus M (2005) [Ru(DMSO)4]Cl2 catalyzes the α-alkylation of of ketones by alcohols. Tetrahedron Lett 46: 3683–3686. doi: 10.1016/j.tetlet.2005.03.158 CrossRefGoogle Scholar
  13. 13.
    Martínez R, Ramón DJ, Yus M (2006) RuCl2(DMSO)4 catalyzes the β-alkylation of secondary alcohols with primary alcohols through a hydrogen autotransfer process. Tetrahedron 62: 8982–8987. doi: 10.1016/j.tet.2006.07.012 CrossRefGoogle Scholar
  14. 14.
    Martínez R, Ramón DJ, Yus M (2007) RuCl2(DMSO)4 catalyzes the solvent-free indirect Friedländer synthesis of polysubstituted quinolines from alcohols. Eur J Org Chem 1599–1605. doi: 10.1002/ejoc.200600945
  15. 15.
    Martínez R, Ramón DJ, Yus M (2008) Transition-metal-free indirect Friedländer synthesis of quinolines from alcohols. J Org Chem 73: 9778–9780. doi: 10.1021/jo801678n CrossRefPubMedGoogle Scholar
  16. 16.
    Martínez R, Zoli L, Cozzi PG, Ramón DJ, Yus M. (2008) Synthesis of camphorsulfonamide-based quinoline ligands and their N-oxides: first use in the enantioselective addition of organozinc reagents to aldehydes. Tetrahedron: Asymmetry 19: 2600–2607. doi: 10.1016/j.tetasy.2008.10.020 CrossRefGoogle Scholar
  17. 17.
    Kotani M, Koike T, Yamaguchi K, Mizuno N (2006) Ruthenium hydroxide on magnetite as magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction. Green Chem 8: 735–741. doi: 10.1039/b603204d CrossRefGoogle Scholar
  18. 18.
    Martínez R (2009) Reacciones de autotransferencia de hidrógeno y multicomponente de hidrógeno catalizadas por RuCl2 (DMSO)4y Fe3O4. Dissertation, University of AlicanteGoogle Scholar
  19. 19.
    Martínez R, Ramón DJ, Yus M (2009) Selective N-monoalkylation of aromatic amines with benzylic alcohols by a hydrogen autotransfer process catalyzed by unmodified magnetite. Org Biomol Chem 7: 2176–2181. doi: 10.1039/b901929d CrossRefPubMedGoogle Scholar
  20. 20.
    Alonso F, Radivoy G, Yus M (2003) Active-nickel based reduction of organic compounds. Russ Chem Bull Int Ed 52: 2563–2576. doi: 1066-5285/03/5212-2628 CrossRefGoogle Scholar
  21. 21.
    Alonso F, Yus M (2004) The NiCl2-Li-arene(cat.) combination: a versatile reducing mixture. Chem Soc Rev 33: 284–293. doi: 10.1039/b315131j CrossRefPubMedGoogle Scholar
  22. 22.
    Alonso F, Yus M (2008) New synthetic methodologies based on active transition metals. Pure Appl Chem 80: 1005–1012. doi: 10.1351/pac200880051005 CrossRefGoogle Scholar
  23. 23.
    Alonso F, Calvino JJ, Osante I, Yus M (2005) A new straightforward and mild preparation of nickel(0) nanoparticles. Chem Lett 34: 1262–1263. doi: 10.1246/cl.2005.1262 CrossRefGoogle Scholar
  24. 24.
    Alonso F, Calvino JJ, Osante I, Yus M (2006) Preparation of nickel(0) nanoparticles by arene-catalyzed reduction of different nickel chloride-containing systems. J Exp Nanosci 1: 419–433. doi: 10.1080/17458080601027652 CrossRefGoogle Scholar
  25. 25.
    Alonso F, Osante I, Yus M (2006) Highly stereoselective semihydrogenation of alkynes promoted by nickel(0) nanoparticles. Adv Synth Catal 348: 305–308. doi: 10.1002/adsc.200505327 CrossRefGoogle Scholar
  26. 26.
    Alonso F, Osante I, Yus M (2007) Highly selective hydrogenation of multiple carbon-carbon bonds promoted by nickel(0) nanoparticles. Tetrahedron 63: 93–102. doi: 10.1016/j.tet.2006.10.043 CrossRefGoogle Scholar
  27. 27.
    Alonso F, Osante I, Yus M (2006) Conjugate reduction of α, β-unsaturated carbonyl compounds promoted by nickel nanoparticles. Synlett 3017–3020. doi: 10.1055/s-2006-951494
  28. 28.
    Alonso F, Riente P, Yus M (2008) Hydrogen transfer reduction of carbonyl compounds promoted by nickel(0) nanoparticles. Tetrahedron 64: 1847–1852. doi: 10.1016/j.tet.2007.11.093 CrossRefGoogle Scholar
  29. 29.
    Alonso F, Riente P, Yus M (2008) Hydrogen transfer reduction of carbonyl compounds catalysed by nickel nanoparticles. Tetrahedron Lett 49: 1939–1942. doi: 10.1016/j.tet.2007.12.036 CrossRefGoogle Scholar
  30. 30.
    Alonso F, Riente P, Yus M (2007) The α-alkylation of methyl ketones with primary alcohols promoted by nickel nanoparticles under mild and ligandless conditions. Synlett 1877–1880. doi: 10.1055/s-2007-984522
  31. 31.
    Alonso F, Riente P, Yus M (2008) Alcohols for the α-alkylation of methyl ketones and indirect aza-Wittig reaction promoted by nickel nanoparticles. Eur J Org Chem 4908–4914 doi: 10.1002/ejoc.200800729
  32. 32.
    Palacios F, Alonso C, Aparicio D, Rubiales G, de los Santos JM (2007) The aza-Wittig reacion: an efficient tool for the construction of carbon-nitrogen double bonds. Tetrahedron 63: 523–575. doi: 10.1016/j.tet.2006.09.048 CrossRefGoogle Scholar
  33. 33.
    Cami-Kobeci G, Williams JMJ (2004) Conversion of alcohols into N-alkyl anilines via an indirect aza-Wittig reaction. Chem Commun 1072–1073. doi: 10.1039/b402020k
  34. 34.
    Taylor RJK, Reid M, Foot J, Raw SA (2005) Tandem oxidation processes using manganese dioxide: discovery, applications, and current studies. Acc Chem Res 38: 851–869. doi: 10.1021/ar050113t CrossRefPubMedGoogle Scholar
  35. 35.
    Alonso F, Riente P, Yus M (2009) One-pot synthesis of stilbenes from alcohols through a Wittig-type olefination reaction promoted by nickel nanoparticles. Synlett 1579–1582. doi: 10.1055/s-0029-1217333
  36. 36.
    Zhu J, Bienaymé H (eds) (2005) Multicomponent reactions. Wiley-VCH, WeinheimGoogle Scholar
  37. 37.
    Ramón DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed 44: 1602–1634. doi: 10.1002/anie.200460548 CrossRefGoogle Scholar
  38. 38.
    Guillena G, Ramón DJ, Yus M (2007) Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron: Asymmetry 18: 693–700. doi: 10.1016/j.tetasy.2007.03.002 CrossRefGoogle Scholar
  39. 39.
    Merino P, Marqués-López E, Tejero T, Herrera RP (2009) Organocatalyzed Strecker reactions. Tetrahedron 65: 1219–1234. doi: 10.1016/j.tet.2008.11.020 (and references therein)CrossRefGoogle Scholar
  40. 40.
    Gawronski J, Wascinska N, Gajewy J (2008) Recent progress in Lewis base activation and control of sterereoselectivity in the addition of trimethylsilyl nucleophiles. Chem Rev 108: 5227–5242. doi: 10.1021/cr800421c CrossRefPubMedGoogle Scholar
  41. 41.
    Martínez R, Ramón DJ, Yus M (2005) Catalyst-free multicomponent Strecker reaction in acetonitrile. Tetrahedron Lett 46: 8471–8474. doi: 10.1016/j.tetlet.2005.10.020 CrossRefGoogle Scholar
  42. 42.
    Martínez R, Ramón DJ, Yus M (2008) Unmodified nano-powder magnetite catalyzes a four-component aza-Sakurai reaction. Adv Synth Catal 350: 1235–1240. doi: 10.1002/adsc.200800089 CrossRefGoogle Scholar
  43. 43.
    Feringa BL (2000) Phosphoramidites: marvellous ligands in catalytic asymmetric conjugate addition. Acc Chem Res 33: 346–353. doi: 10.1021/ar990084k CrossRefPubMedGoogle Scholar
  44. 44.
    Alexakis A, Benhaim C (2002) Enantioselective copper-catalysed conjugate addition. Eur J Org Chem 3221–3236. doi: 10.1002/1099-0690(200210)2002:19<3221:AID-EJOC3221>3.0.CO;2-U
  45. 45.
    Kitamura M, Miki T, Nakano K, Noyori R (1996) Conjugate addition of diorganozincs to α, β-unsaturated ketones catalyzed by a copper(I)-sulfonamide combined system. Tetrahedron Lett 37: 5141–5144. doi: 10.1016/0040-4039(96)01038-6 CrossRefGoogle Scholar
  46. 46.
    Feringa BL, Pineschi M, Arnold LA, Imbos R, de Vries AHM (1997) Highly enantioselective catalytic conjugate addition and tandem conjugate addition-aldol reactions of organozinc reagents. Angew Chem Int Ed 36: 2620–2623. doi: 10.1002/anie.199726201 CrossRefGoogle Scholar
  47. 47.
    González-Gómez JC, Foubelo F, Yus M (2008) Tandem enantioselective conjugate addition-Mannich reactions: efficient multicomponent assembly of dialkylzincs, cyclic enones and chiral N-sulfinimines. Tetrahedron Lett 49: 2343–2347. doi: 10.1016/j.tetlet.2008.02.076 CrossRefGoogle Scholar
  48. 48.
    González-Gómez JC, Foubelo F, Yus M (2009) Modular stereocontrolled assembly of R2Zn, cyclic enones and N-tert-butanesulfinyl imines. J Org Chem 74: 2547–2553. doi: 10.1021/jo802812w CrossRefPubMedGoogle Scholar
  49. 49.
    González-Gómez JC, Foubelo F, Yus M (2009) Stereocontrolled synthesis of 1,3-amino alcohols by reduction of subtituted 2-{1-[(tert-butylsulfinyl)amino]alkyl}cyclohexanones. Synthesis 2083–2088 doi: 10.1055/s-0029-1216821

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Francisco Alonso
    • 1
  • Francisco Foubelo
    • 1
  • José C. González-Gómez
    • 1
  • Ricardo Martínez
    • 1
  • Diego J. Ramón
    • 1
  • Paola Riente
    • 1
  • Miguel Yus
    • 1
  1. 1.Instituto de Síntesis Orgánica and Departamento de Química Orgánica, Facultad de CienciasUniversidad de AlicanteAlicanteSpain

Personalised recommendations