Molecular Diversity

, Volume 14, Issue 2, pp 215–224 | Cite as

Parallel synthesis of a series of non-functional ATP/NAD analogs with activity against trypanosomatid parasites

  • Andreas Link
  • Philipp Heidler
  • Marcel Kaiser
  • Reto Brun
Full-Length Paper


Non-functional analogs of the cofactors ATP and NAD are putative inhibitors of ATP- or NAD-dependant enzymes. Since pathogenic protozoa rely heavily on the salvage of purine nucleosides from the bloodstream of their host, such compounds are of interest as antiplasmodial and antitrypanosomal agents with a multitude of molecular targets. By replacing the negatively charged phosphate residues with a constrained unsaturated amide spacer and the nicotinamide moiety of NAD with various lipophilic substituents, 15 new ATP/NAD analogs were obtained in screening quantities. In these compounds, a 5′-desoxyadenosine moiety was conserved as key molecular recognition motif. The inhibition of P. falciparum and T. brucei ssp. in a whole parasite in vitro assay is reported.


Adenosine ATP NAD Trypanosomes Polymer-bound reagents 



Benzamide adenine dinucleotide


Cyclin-dependent kinase


Catechol O-methyltransferase






N,N-Dimethyl formamide


Glyceraldehyde phosphate dehydrogenase


N-Hydroxy benzotriazole


Medium pressure liquid chromatography


(Never-in-mitosis-A)-related protein kinase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Salabi MI, Wallace LJM, Luscher A, Maser P, Candlish D, Rodenko B, Gould MK, Jabeen I, Ajith SN, de Koning HP (2007) Molecular interactions underlying the unusually high adenosine affinity of a novel Trypanosoma brucei nucleoside transporter. Mol Pharmacol 71: 921–929. doi: 10.1124/mol.106.031559 CrossRefPubMedGoogle Scholar
  2. 2.
    Aronov AM, Gelb MH (1998) Synthesis and structure-activity relationships of adenosine analogs as inhibitors of trypanosomal glyceraldehyde-3-phosphate dehydrogenase. Modifications at positions 5′ and 8. Bioorg Med Chem Lett 8: 3505–3510. doi: S0960894X98006350 CrossRefPubMedGoogle Scholar
  3. 3.
    Bell CE, Yeates TO, Eisenberg D (1997) Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes. Protein Sci 6: 2084–2096. doi: 10.1002/pro.5560061004 CrossRefPubMedGoogle Scholar
  4. 4.
    Bonnac L, Chen L, Pathak R, Gao G, Ming Q, Bennett E, Felczak K, Kullberg M, Patterson SE, Mazzola F et al (2007) Probing binding requirements of NAD kinase with modified substrate (NAD) analogues. Bioorg Med Chem Lett 17: 1512–1515. doi: S0960-894X(07)00049-2,  10.1016/j.bmcl.2007.01.012 Google Scholar
  5. 5.
    Bressi JC, Choe J, Hough MT, Buckner FS, Van Voorhis WC, Verlinde CL, Hol WG, Gelb MH (2000) Adenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-amino-N 6-substituted adenosine. J Med Chem 43: 4135–4150. doi: jm000287a CrossRefPubMedGoogle Scholar
  6. 6.
    Bressi JC, Verlinde C, Aronov AM, Le Shaw M, Shin SS, Nguyen LN, Suresh S, Buckner FS, Van Voorhis WC, Kuntz ID et al (2001) Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of Trypanosomatidae via structure-based drug design. J Med Chem 44: 2080–2093. doi: 10.1021/jm000472o CrossRefPubMedGoogle Scholar
  7. 7.
    Caprellacci L, Franchetti P, Vita P, Petrelli R, Lavecchia A, Jayaram HN, Saiko P, Graser G, Szekeres T, Grifantini M (2008) Ribose-modified purine nucleosides as ribonucleotide reductase inhibitors. Synthesis, antitumor activity, and molecular modeling of N 6-substituted 3′-C-methyladenosine derivatives. J Med Chem 51:4260–4269. doi: 10.1021/jm800205c CrossRefGoogle Scholar
  8. 8.
    de Koning HP (2001) Transporters in African trypanosomes: role in drug action and resistance. Int J Parasitol 31: 512–522. doi: S0020-7519(01)00167-9 PubMedGoogle Scholar
  9. 9.
    de Koning HP, Jarvis SM (1999) Adenosine transporters in bloodstream forms of Trypanosoma brucei  brucei: substrate recognition motifs and affinity for trypanocidal drugs. Mol Pharmacol 56: 1162–1170PubMedGoogle Scholar
  10. 10.
    de Koning HP, Bridges DJ, Burchmore RJ (2005) Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol Rev 29: 987–1020. doi: S0168-6445(05)00038-0,  10.1016/j.femsre.2005.03.004
  11. 11.
    Desjardins RE, Canfield CJ, Haynes JD, Chulay JD (1979) Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16: 710–718PubMedGoogle Scholar
  12. 12.
    Dolezal K, Popa I, Hauserova E, Spichal L, Chakrabarty K, Novak O, Krystof V, Voller J, Holub J, Strnad M (2007) Preparation, biological activity and endogenous occurrence of N 6-benzyladenosines. Bioorg Med Chem 15: 3737–3747. doi: 10.1016/j.bmc.2007.03.038 CrossRefPubMedGoogle Scholar
  13. 13.
    Flynn DL, Devraj R, Naing W, Parlow J, Weidner J, Yang S (1998) Polymer-assisted solution phase (PASP) chemical library synthesis. Med Chem Res 8: 219–243Google Scholar
  14. 14.
    Gale M   Jr, Carter V, Parsons M (1994) Translational control mediates the developmental regulation of the Trypanosoma brucei Nrk protein kinase. J Biol Chem 269: 31659–31665PubMedGoogle Scholar
  15. 15.
    Gebicki J, Marcinek A, Zielonka J (2004) Transient species in the stepwise interconversion of NADH and NAD+. Acc Chem Res 37: 379–386. doi: 10.1021/ar030171j CrossRefPubMedGoogle Scholar
  16. 16.
    Golisade A, Herforth C, Quirijnen L, Maes L, Link A (2002) Improving an antitrypanosomal lead applying nucleophilic substitution on a safety catch linker. Bioorg Med Chem 9: 159–165. doi: S096808960100253X CrossRefGoogle Scholar
  17. 17.
    Golisade A, Wiesner J, Herforth C, Jomaa H, Link A (2002) Anti-malarial activity of N 6-substituted adenosine derivatives. Part I. Bioorg Med Chem 10: 769–777. doi: S0968089601003315 CrossRefGoogle Scholar
  18. 18.
    Goulioukina N, Wehbe J, Marchand D, Busson R, Lescrinier E, Heindl D, Herdewijn P (2007) Synthesis of nicotinamide adenine dinucleotide (NAD) analogues with a sugar modified nicotinamide moiety. Helv Chim Acta 90: 1266–1278. doi: 10.1002/hlca.200790127 CrossRefGoogle Scholar
  19. 19.
    Grant KM, Hassan P, Anderson JS, Mottram JC (1998) The crk3 gene of Leishmania mexicana encodes a stage-regulated cdc2-related histone H1 kinase that associates with p12. J Biol Chem 273: 10153–10159. doi: 10.1074/jbc.273.17.10153 CrossRefPubMedGoogle Scholar
  20. 20.
    Grant KM, Dunion MH, Yardley V, Skaltsounis AL, Marko D, Eisenbrand G, Croft SL, Meijer L, Mottram JC (2004) Inhibitors of Leishmania mexicana CRK3 cyclin-dependent kinase: chemical library screen and antileishmanial activity. Antimicrob Agents Chemother 48: 3033–3042. doi: 10.1128/AAC.48.8.3033-3042.2004,  48/8/3033
  21. 21.
    Greig N, Wyllie S, Patterson S, Fairlamb AH (2009) A comparative study of methylglyoxal metabolism in trypanosomatids. FEBS J 276: 376–386. doi: 10.1111/j.1742-4658.2008.06788.x CrossRefPubMedGoogle Scholar
  22. 22.
    Herforth C, Wiesner J, Franke S, Golisade A, Jomaa H, Link A (2002) Antimalarial activity of N 6-substituted adenosine derivatives (Part 2). J Comb Chem 4: 302–314. doi: cc0100823 CrossRefPubMedGoogle Scholar
  23. 23.
    Herforth C, Wiesner J, Heidler P, Sanderbrand S, Van Calenbergh S, Jomaa H, Link A (2004) Antimalarial activity of N 6-substituted adenosine derivatives. Part 3. Bioorg Med Chem 12: 755–762. doi: 10.1016/j.bmc.2003.11.008,  S0968089603007752 Google Scholar
  24. 24.
    Hirsch AK, Fischer FR, Diederich F (2007) Phosphate recognition in structural biology. Angew Chem Int Ed 46: 338–352. doi: 10.1002/anie.200603420 CrossRefGoogle Scholar
  25. 25.
    Jagtap PG, Southan GJ, Baloglu E, Ram S, Mabley JG, Marton A, Salzman A, Szabo C (2004) The discovery and synthesis of novel adenosine substituted 2,3-dihydro-1H-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg Med Chem Lett 14: 81–85. doi: S0960894X0301062X CrossRefPubMedGoogle Scholar
  26. 26.
    Kennedy KJ, Bressi JC, Gelb MH (2001) A disubstituted NAD+ analogue is a nanomolar inhibitor of trypanosomal glyceraldehyde-3-phosphate dehydrogenase. Bioorg Med Chem Lett 11: 95–98. doi: S0960894X00006089 CrossRefPubMedGoogle Scholar
  27. 27.
    Kim YA, Sharon A, Chu CK, Rais RH, Al Safarjalani ON, Naguib FN, el Kouni MH (2007) Synthesis, biological evaluation and molecular modeling studies of N 6-benzyladenosine analogues as potential anti-toxoplasma agents. Biochem Pharmacol 73: 1558–1572. doi: S0006-2952(07)00033-0,  10.1016/j.bcp.2007.01.026 Google Scholar
  28. 28.
    Kunick C, Egert-Schmidt AM (2008) The short history of protein kinase inhibitors. New, competitive, successful. Pharm Unserer Zeit 37: 360–368. doi: 10.1002/pauz.200800277 Google Scholar
  29. 29.
    Kunick C, Lauenroth K, Leost M, Meijer L, Lemcke T (2004) 1-Azakenpaullone is a selective inhibitor of glycogen synthase kinase-3 beta. Bioorg Med Chem Lett 14: 413–416CrossRefPubMedGoogle Scholar
  30. 30.
    Lerner C, Ruf A, Gramlich V, Masjost B, Zurcher G, Jakob-Roetne R, Borroni E, Diederich F (2001) X-ray crystal structure of a bisubstrate inhibitor bound to the enzyme catechol-O-methyltransferase: a dramatic effect of inhibitor preorganization on binding affinity. Angew Chem Int Ed 40: 4040–4042. doi: 10.1002/1521-3773(20011105)40:21<4040:AID-ANIE4040>3.0.CO;2-C CrossRefGoogle Scholar
  31. 31.
    Lerner C, Masjost B, Ruf A, Gramlich V, Jakob-Roetne R, Zurcher G, Borroni E, Diederich F (2003) Bisubstrate inhibitors for the enzyme catechol-O-methyltransferase (COMT): influence of inhibitor preorganisation and linker length between the two substrate moieties on binding affinity. Org Biomol Chem 1: 42–49. doi: 10.1039/b208690p CrossRefPubMedGoogle Scholar
  32. 32.
    Link A (2000) Comments on the terminology for applications of temporarily attached solubility-modifying moieties in combinatorial chemistry. Angew Chem Int Ed 39: 4039–4040. doi: 10.1002/1521-3773(20001117)39:22<4039:AID-ANIE4039>3.0.CO;2-3 CrossRefGoogle Scholar
  33. 33.
    Link A, Van Calenbergh S, Herdewijn P (1998) Practical method for the parallel synthesis of 2′-amido-2′-deoxyadenosines. Tetrahedron Lett 39: 5175–5176. doi: 10.1016/S0040-4039(98)01057-0 CrossRefGoogle Scholar
  34. 34.
    Matile H, Pink JRL (1990) Plasmodium falciparum malaria parasite cultures and their use in immunology. In: Lefkovits I, Pernis B (eds) Immunological methods. Academic Press, San Diego, pp 221–234Google Scholar
  35. 35.
    Masjost B, Ballmer P, Borroni E, Zurcher G, Winkler FK, Jakob-Roetne R, Diederich F (2000) Structure-based design, synthesis, and in vitro evaluation of bisubstrate inhibitors for catechol O-methyltransferase (COMT). Chem Eur J 6: 971–982. doi: 10.1002/(SICI)1521-3765(20000317)6:6<971:AID-CHEM971>3.0.CO;2-0 CrossRefGoogle Scholar
  36. 36.
    Natto MJ, Wallace LJ, Candlish D, Al-Salabi MI, Coutts SE, de Koning HP (2005) Trypanosoma brucei: expression of multiple purine transporters prevents the development of allopurinol resistance. Exp Parasitol 109: 80–86. doi: S0014-4894(04)00188-2,  10.1016/j.exppara.2004.11.004 Google Scholar
  37. 37.
    Naula C, Parsons M, Mottram JC (2005) Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta 1754: 151–159. doi: S1570-9639(05)00303-1,  10.1016/j.bbapap.2005.08.018 Google Scholar
  38. 38.
    Neres J, Labello NP, Somu RV, Boshoff HI, Wilson DJ, Vannada J, Chen L, Barry CE III, Bennett EM, Aldrich CC (2008) Inhibition of siderophore biosynthesis in mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5′-O-[N-(Salicyl)sulfamoyl]adenosine. J Med Chem 51: 5349–5370. doi: 10.1021/jm800567v CrossRefPubMedGoogle Scholar
  39. 39.
    Paulini R, Lerner C, Jakob-Roetne R, Zurcher G, Borroni E, Diederich F (2004) Bisubstrate inhibitors of the enzyme catechol O-methyltransferase (COMT): efficient inhibition despite the lack of a nitro group. ChemBioChem 5: 1270–1274. doi: 10.1002/cbic.200400084 CrossRefPubMedGoogle Scholar
  40. 40.
    Paulini R, Trindler C, Lerner C, Brandli L, Schweizer WB, Jakob-Roetne R, Zurcher G, Borroni E, Diederich F (2006) Bisubstrate inhibitors of catechol O-methyltransferase (COMT): the crucial role of the ribose structural unit for inhibitor binding affinity. ChemMedChem 1: 340–357. doi: 10.1002/cmdc.200500065 CrossRefPubMedGoogle Scholar
  41. 41.
    Qiao C, Gupte A, Boshoff HI, Wilson DJ, Bennett EM, Somu RV, Barry CE III, Aldrich CC (2007) 5′-O-[(N-acyl)sulfamoyl]adenosines as antitubercular agents that inhibit MbtA: an adenylation enzyme required for siderophore biosynthesis of the mycobactins. J Med Chem 50: 6080–6094. doi: 10.1021/jm070905o CrossRefPubMedGoogle Scholar
  42. 42.
    Räz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R (1997) The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) in vitro. Acta Trop 68: 139–147. doi: S0001706X9700079X CrossRefPubMedGoogle Scholar
  43. 43.
    Reichwald C, Shimony O, Dunkel U, Sacerdoti-Sierra N, Jaffe CL, Kunick C (2008) 2-(3-Aryl-3-oxopropen-1-yl)-9-tert-butyl-paullones: a new antileishmanial chemotype. J Med Chem 51: 659–665. doi: 10.1021/jm7012166 CrossRefPubMedGoogle Scholar
  44. 44.
    Renner S, Schwab CH, Gasteiger J, Schneider G (2006) Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. J Chem Inf Model 46: 2324–2332. doi: 10.1021/ci050075s CrossRefPubMedGoogle Scholar
  45. 45.
    Rottenberg ME, Masocha W, Ferella M, Petitto-Assis F, Goto H, Kristensson K, McCaffrey R, Wigzell H (2005) Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model. J Infect Dis 192: 1658–1665. doi: 10.1086/496896 CrossRefPubMedGoogle Scholar
  46. 46.
    Salvino JM, Kumar NV, Orton E, Airey J, Kiesow T, Crawford K, Mathew R, Krolikowski P, Drew M, Engers D et al (2000) Polymer-supported tetrafluorophenol: a new activated resin for chemical library synthesis. J Comb Chem 2: 691–697. doi: cc0000491 CrossRefPubMedGoogle Scholar
  47. 47.
    Schultz C, Link A, Leost M, Zaharevitz DW, Gussio R, Sausville EA, Meijer L, Kunick C (1999) Paullones, a series of cyclin-dependent kinase inhibitors: synthesis, evaluation of CDK1/cyclin B inhibition, and in vitro antitumor activity. J Med Chem 42: 2909–2919. doi: 10.1021/jm9900570 CrossRefPubMedGoogle Scholar
  48. 48.
    Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305: 399–401. doi: 10.1126/science.1099480,  305/5682/399 Google Scholar
  49. 49.
    Smith PE, Tanner JJ (1999) Molecular dynamics simulations of NAD+ in solution. J Am Chem Soc 121: 8637–8644. doi: 10.1021/ja991624b CrossRefGoogle Scholar
  50. 50.
    Smith PE, Tanner JJ (2000) Conformations of nicotinamide adenine dinucleotide (NAD+) in various environments. J Mol Recognit 13: 27–34. doi: 10.1002/(SICI)1099-1352(200001/02)13:1<27:AID-JMR483>3.0.CO;2-8 CrossRefPubMedGoogle Scholar
  51. 51.
    Stukenbrock H, Mussmann R, Geese M, Ferandin Y, Lozach O, Lemcke T, Kegel S, Lomow A, Burk U, Dohrmann C et al (2008) 9-cyano-1-azapaullone (cazpaullone), a glycogen synthase kinase-3 (GSK-3) inhibitor activating pancreatic beta cell protection and replication. J Med Chem 51: 2196–2207. doi: 10.1021/jm701582f CrossRefPubMedGoogle Scholar
  52. 52.
    Trapp J, Jochum A, Meier R, Saunders L, Marshall B, Kunick C, Verdin E, Goekjian P, Sippl W, Jung M (2006) Adenosine mimetics as inhibitors of NAD+-dependent histone deacetylases, from kinase to sirtuin inhibition. J Med Chem 49: 7307–7316. doi: 10.1021/jm060118b CrossRefPubMedGoogle Scholar
  53. 53.
    Vande Vijver P, Vondenhoff GH, Denivelle S, Rozenski J, Verhaegen J, Van Aerschot A, Herdewijn P (2009) Antibacterial 5′-O- (N-dipeptidyl)-sulfamoyladenosines. Bioorg Med Chem 17: 260–269. doi: S0968-0896(08)01057-2,  S0968-0896(08)01057-2 Google Scholar
  54. 54.
    Wallace LJ, Candlish D, Hagos A, Seley KL, de Koning HP (2004) Selective transport of a new class of purine antimetabolites by the protozoan parasite Trypanosoma brucei. Nucleos Nucleot Nucl 23: 1441–1444. doi: 10.1081/NCN-200027660 CrossRefGoogle Scholar
  55. 55.
    Yoshikawa N, Yamada S, Takeuchi C, Kagota S, Shinozuka K, Kunitomo M, Nakamura K (2008) Cordycepin (3′-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A(3) receptor followed by glycogen synthase kinase-3beta activation and cyclin D (1) suppression. Naunyn Schmiedebergs Arch Pharmacol 377: 591–595. doi: 10.1007/s00210-007-0218-y CrossRefPubMedGoogle Scholar
  56. 56.
    Zohrabi-Kalantari V, Heidler P, Larsen T, Link A (2005) O,N, N′-trialkylisoureas as mild activating reagents for N-acylsulfonamide anchors. Org Lett 7: 5665–5667. doi: 10.1021/ol052351u CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Andreas Link
    • 1
  • Philipp Heidler
    • 2
  • Marcel Kaiser
    • 3
  • Reto Brun
    • 3
  1. 1.Institute of PharmacyErnst-Moritz-Arndt-UniversityGreifswaldGermany
  2. 2.Institute of Pharmaceutical ChemistryPhilipps-University MarburgMarburgGermany
  3. 3.Swiss Tropical InstituteBaselSwitzerland

Personalised recommendations