Molecular Diversity

, Volume 14, Issue 1, pp 3–25 | Cite as

Microwave-assisted synthesis using ionic liquids

Review

Abstract

The research and application of green chemistry principles have led to the development of cleaner processes. In this sense, during the present century an ever-growing number of studies have been published describing the use of ionic liquids (ILs) as solvents, catalysts, or templates to develop more environmentally friendly and efficient chemical transformations for their use in both academia and industry. The conjugation of ILs and microwave irradiation as a non-conventional heating source has shown evident advantages when compared to conventional synthetic procedures for the generation of fast, efficient, and environmental friendly synthetic methodologies. This review focuses on the advances in the use of ILs in organic, polymers and materials syntheses under MW irradiation conditions.

Keywords

Ionic liquids Microwave Organic synthesis Polymer synthesis Materials synthesis 

Abbreviations

IL(s)

Ionic liquid(s)

MW

Microwave

CIL(s)

Chiral Ionic Liquid(s)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polshettiwar V, Varma RS (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41: 629–639. doi: 10.1021/ar700238s PubMedGoogle Scholar
  2. 2.
    Hoffmann H, Nuchter M, Ondruschka B, Wasserscheid P (2003) Ionic liquids and their heating behaviour during microwave irradiation—a state of the art report and challenge to assessment. Green Chem 5: 296–299. doi: 10.1039/b212533a Google Scholar
  3. 3.
    Levenque JM, Cravotto G (2006) Microwave, power ultrasound and ionic liquids. A new synergy in green organic synthesis. Chimia (Aarau) 60: 613–620Google Scholar
  4. 4.
    Martínez-Palou R (2006) Química en Microondas. CEM Publishing, MattewsGoogle Scholar
  5. 5.
    Lidstöm P, Tierney JP (eds) (2006) Microwave in organic synthesis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Lidstöm P, Tierney JP (2005) Microwave-assisted organic synthesis. Blackwell Scientific: OxfordGoogle Scholar
  7. 7.
    Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Loupy A (ed) (2002) Microwave in organic chemistry, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  9. 9.
    Hayes BL (2002) Microwave synthesis: chemistry at the speed of light, 1st edn. CEM Publishing, MatthewsGoogle Scholar
  10. 10.
    Lidstrom P, Westman J, Lewis A (2002) Enhancement of combinatorial chemistry by microwave-assisted organic synthesis. Comb Chem High Throughput Screen 5: 441–448PubMedGoogle Scholar
  11. 11.
    Blackwell HE (2003) Out of the oil bath and into the oven-microwave-assisted combinatorial chemistry heats up. Org Biomol Chem 1: 1251–1255. doi: 10.1039/b301432k PubMedGoogle Scholar
  12. 12.
    Santagada V, Frecentese F, Perissutti E, Favretto L, Caliendo G (2004) The application of microwaves in combinatorial and high-throughput synthesis as new synthetic procedures in drug discovery. QSAR Comb Sci 23: 919–944. doi: 10.1002/qsar.200420039 Google Scholar
  13. 13.
    Microwave oven for laboratory use suppliers: (a) CEM Corporation (http://www.cemsynthesis.com), (b) Biotage AB (http://www.biotage.com), (c) Milestone (http://www.milestonesci.com), (d) Anton Paar (http://www.antonpaar.com), (e) Sistemas y Equipos de Vidrio (http://www.sevmexico.com), (f) Lambda Technologies (http://www.microcure.com)
  14. 14.
    Alcázar J, Diels G, Schoentjes B (2004) Reproducibility across microwave instruments: first example of genuine parallel scale up of compounds under microwave irradiation. QSAR Comb Sci 23: 906–910. doi: 10.1002/qsar.200420035 Google Scholar
  15. 15.
    Wasserscheid P, Keim W (2000) Ionic liquid-new “solutions” for transition metal catalysis. Angew Chem Int Ed Engl 39: 3773–3789. doi: 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5 Google Scholar
  16. 16.
    Corma A, García H (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 103: 4307–4365. doi: 10.1021/cr030680z PubMedGoogle Scholar
  17. 17.
    Olivier-Bourbigou H, Magna L (2002) Ionic liquids: perspectives for organic and catalysis reactions. J Mol Catal A 182(−183): 419–437. doi: 10.1016/S1381-1169(01)00465-4 Google Scholar
  18. 18.
    Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of formation of Z-aspartame in ionic liquids—an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16: 1129–1131. doi: 10.1021/bp000094g PubMedGoogle Scholar
  19. 19.
    Smiglak M, Metlen A, Rogers RD (2007) The second evolution of ionic liquids: from solvents and separations to advanced materials-energetic examples from the ionic liquid cookbook. Acc Chem Res 40: 1082–1092. doi: 10.1021/ar7001304 Google Scholar
  20. 20.
    Shukla AK, Kumar TP (2008) Materials for next-generation lithium batteries. Curr Sci 94: 314–331Google Scholar
  21. 21.
    Wasserscheid P,Welton T (eds) (2002) Ionic liquids in synthesis. Wiley-VCH, WenheimGoogle Scholar
  22. 22.
    Paczal A, Kotschy A (2007) Asymmetric synthesis in ionic liquids. Monatsh Chem 138: 1115–1123. doi: 10.1007/s00706-007-0759-2 Google Scholar
  23. 23.
    Sun W, Gao RF, Jiao K (2007) Research and application of ionic liquids in analytical chemistry. Anal Chem 35: 1813–1819Google Scholar
  24. 24.
    Buhler G, Zharkouskaya A, Feldmann C (2008) Ionic liquid based approach to nanoscale functional materials. Solid State Sci 10: 461–465. doi: 10.1016/j.solidstatesciences.2007.12.002 Google Scholar
  25. 25.
    Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscle. Mater Today 10: 30–38. doi: 10.1016/S1369-7021(07)70048-2 Google Scholar
  26. 26.
    van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107: 2757–2785. doi: 10.1021/cr050946x PubMedGoogle Scholar
  27. 27.
    Rogers RD, Seddon KR (eds) (2002) Ionic liquids: industrial applications of green chemistry. ACS, Washington, DCGoogle Scholar
  28. 28.
    Rogers RD, Seddon KR (eds) (2005) Ionic liquids IIIB: fundamentals, progress, challenges, and opportunities: transformations and processes ACS symposium series, BostonGoogle Scholar
  29. 29.
    Roger RD, Seddon KR, Volkov S (eds) (2002) Green industrial applications of ionic liquids. NATO Science Series. Kluwer, DordrechtGoogle Scholar
  30. 30.
    Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40: 1079–1086. doi: 10.1021/ar700044y PubMedGoogle Scholar
  31. 31.
    Varma RS, Namboodiri VV (2001) Solvent-free preparation of ionic liquids using household microwave. Pure Appl Chem 73: 1309–1313. doi: 10.1351/pac200173081309 Google Scholar
  32. 32.
    Varma RS, Namboodiri VV (2001) An expeditious solvent-free route to ionic liquids using microwaves. Chem Commun (Camb) 643–644 doi: 10.1039/b101375k
  33. 33.
    Namboodiri VV, Varma RS (2002) Solvent-free sonochemical preparation of ionic liquids. Org Lett 4: 3161–3163. doi: 10.1021/ol026608p PubMedGoogle Scholar
  34. 34.
    Khadilkar BM, Rebeiro GL (2002) Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel. Org Process Res Dev 6: 826–828. doi: 10.1021/op025551j Google Scholar
  35. 35.
    Fu SK, Liu ST (2006) Preparation of functionalized imidazolium salts under microwave irradiation. Synth Commun 36: 2059–2067. doi: 10.1080/00397910600634464 Google Scholar
  36. 36.
    Deetlefs M, Seddon KR (2003) Improved preparations of ionic liquids using microwave irradiation. Green Chem 5: 181–186. doi: 10.1039/b300071k Google Scholar
  37. 37.
    Fraga-Dubreuil J, Famelart M-H, Bazureau JP (2002) Ecofriendly fast synthesis of hydrophilic poly(ethyleneglycol)-ionic liquid matrices for liquid-phase organic synthesis. Org Process Res Dev 6: 374–378. doi: 10.1021/op020027y Google Scholar
  38. 38.
    Law MC, Wong K-Y, Chan TH (2002) Solvent-free route to ionic liquid precursors using a water-moderated microwave process. Green Chem 4: 328–330. doi: 10.1039/b203122a Google Scholar
  39. 39.
    Thanh GV, Pegot B, Loupy A (2004) Solvent-free microwave-assisted preparation of chiral ionic liquids from (-)-N-methylephedrine. Eur J Org Chem 5: 1112–1116. doi: 10.1002/ejoc.200300601 Google Scholar
  40. 40.
    Bica K, Gmeiner G, Reichel C, Lendl B, Gaertner P (2007) Microwave-assisted synthesis of camphor-derived chiral imidazolium ionic liquids and their application in diastereoselective Diels–Alder reaction. Synthesis 1333–1338Google Scholar
  41. 41.
    Ohno H, Fukumoto K (2007) Amino acid ionic liquids. Acc Chem Res 40: 1122–1129. doi: 10.1021/ar700053z PubMedGoogle Scholar
  42. 42.
    Rong H, Li W, Chen ZY, Wu XM (2008) Glutamic acid cation based ionic liquids: microwave synthesis, characterization, and theoretical study. J Phys Chem B 112: 1451–1455. doi: 10.1021/jp0774591 PubMedGoogle Scholar
  43. 43.
    Li W, Rong H, Wu XM, Chen ZY (2008) Microwave synthesis, characterization and theoretical study of para-toluenesulfonic acid threonine salt and its ester derivatives. Acta Phys Chim Sin 24: 868–872Google Scholar
  44. 44.
    Vasudevan V, Namboodiri VV, Varma RS (2002) An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Lett 43: 5381–5383. doi: 10.1016/S0040-4039(02)01075-4 Google Scholar
  45. 45.
    Vasudevan V, Namboodiri VV, Varma RS (2002) Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their use as catalysts in the solvent-free tetrahydropyranylation of alcohols and phenols. Chem Commun 342–343Google Scholar
  46. 46.
    Kim YJ, Varma RS (2005) Microwave-assisted preparation of imidazolium-based tetrachloroindate (III) and their application in the tetrahydropyranylation of alcohols. Tetrahedron Lett 46: 1467–1469. doi: 10.1016/j.tetlet.2005.01.025 Google Scholar
  47. 47.
    Kim YJ, Varma RS (2005) Tetrahaloindate (III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. J Org Chem 70: 7882–7891. doi: 10.1021/jo050699x PubMedGoogle Scholar
  48. 48.
    Kim YJ, Varma RS (2005) Microwave-assisted preparation of 1-butyl-3-methylimidazolium tetrachlorogallate and its catalytic use in acetal formation under mild conditions. Tetrahedron Lett 46: 7447–7449. doi: 10.1016/j.tetlet.2005.08.059 Google Scholar
  49. 49.
    Singh J, Gupta N, Kad GL, Kaur J (2006) Efficient role of ionic liquids (bmim) HSO4 as novel catalyst for monotetrahydropyranylation of diols and tetrahydropyranilation of alcohols. Synth Commun 36: 2893–2900. doi: 10.1080/00397910600770839 Google Scholar
  50. 50.
    Pal SK, Kumar S (2006) Microwave-assisted synthesis of novel imidazolium-based ionic liquids crystalline dimmers. Tetrahedron Lett 47: 8993–8997. doi: 10.1016/j.tetlet.2006.09.167 Google Scholar
  51. 51.
    Lenardao EJ, Mendes SR, Ferrerira PC et al (2006) Selenium- and tellurium-based ionic liquids and their use in the synthesis of octahydroacridines. Tetrahedron Lett 47: 7439–7442. doi: 10.1016/j.tetlet.2006.08.049 Google Scholar
  52. 52.
    Cravotto G, Gaudino EC, Boffa L, Leveque JM, Estager J, Bonrath W (2008) Preparation of second generation ionic liquids by efficient solvent-free alkylation of N-heterocycles with chloroalkanes. Molecules 13: 149–156. doi: 10.3390/molecules13010149 PubMedGoogle Scholar
  53. 53.
    Cravotto G, Boffa L, L’Eveque JM, Estager J, Draye M, Bonrath W (2007) A speedy one-pot synthesis of second-generation ionic liquids under ultrasound and/or microwave irradiation. Aust J Chem 60: 946–950. doi: 10.1071/CH07309 Google Scholar
  54. 54.
    Erdmenger T, Paulus RM, Hoogenboom R, Schubert US (2008) Scaling-up the synthesis of 1-butyl-3-methylimidazolium chloride under microwave irradiation. Aust J Chem 61: 197–203. doi: 10.1071/CH07345 Google Scholar
  55. 55.
    Léveque JM, Estager J, Drayer M et al (2007) Synthesis of ionic liquids under non-conventional activation methods. An overview. Monatsh Chem 138: 1103–1113. doi: 10.1007/s00706-007-0742-y Google Scholar
  56. 56.
    Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Application of commercial microwave-ovens to organic-synthesis. Tetrahedron Lett 27: 4945–4948. doi: 10.1016/S0040-4039(00)85103-5 Google Scholar
  57. 57.
    Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave-oven for rapid organic synthesis. Tetrahedron Lett 27: 279–282. doi: 10.1016/S0040-4039(00)83996-9 Google Scholar
  58. 58.
    Loupy A, Petit A, Hamelin J et al (1998) New solvent-free organic synthesis using focused microwave. Synthesis 1213-1234Google Scholar
  59. 59.
    Varma RS (1999) Solvent-free organic syntheses-using supported reagents and microwave irradiation. Gren Chem 43–48Google Scholar
  60. 60.
    Kidwai M (2001) Dry media reactions. Pure Appl Chem 73: 147–151. doi: 10.1351/pac200173010147 Google Scholar
  61. 61.
    Varma RS (2001) Solvent-free accelerated organic syntheses using microwaves. Pure Appl Chem 73: 193–198. doi: 10.1351/pac200173010193 Google Scholar
  62. 62.
    Zhen Z, Yuan M, Zhao YF (2008) Microwave-assisted Friedel–Crafts reactions. Prog Chem 20: 312–317Google Scholar
  63. 63.
    Jindal R, Bajaj S (2008) Recent applications of microwaves in synthesis of bioactive heterocyclic compounds. Curr Org Chem 2: 836–849. doi: 10.2174/138527208784911842 Google Scholar
  64. 64.
    Martins MAP, Frizzo CP, Moreira DN et al (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108: 2015–2050. doi: 10.1021/cr078399y PubMedGoogle Scholar
  65. 65.
    Martinez-Palou R (2007) Ionic liquid and microwave-assisted organic synthesis: a “green” and synergic couple. J Mex Chem Soc 51: 252–264Google Scholar
  66. 66.
    Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107: 2563–2591. doi: 10.1021/cr0509410 PubMedGoogle Scholar
  67. 67.
    Glasnov TN, Kappe CO (2007) Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Commun 28: 395–410. doi: 10.1002/marc.200600665 Google Scholar
  68. 68.
    Ley SV, Leach AG, Storer RI (2001) A polymer-supported thionating reagent. J Chem Soc, Perkin Trans 1(358–361): 1 358–361. doi: 10.1039/b008814p Google Scholar
  69. 69.
    Martínez-Palou R (2006) Advances in microwave-assisted combinatorial chemistry without polymer-support reagents. Mol Divers 10: 435–462. doi: 10.1007/s11030-006-9021-9 PubMedGoogle Scholar
  70. 70.
    Fraga-Dubreuil J, Bazureau JP (2001) Grafted ionic liquid-phase-supported synthesis of small organic molecules. Tetrahedron Lett 42: 6097–6100. doi: 10.1016/S0040-4039(01)01190-X Google Scholar
  71. 71.
    Fraga-Dubreuil J, Bazureau JP (2003) Efficient combination of task-specific ionic liquids and microwave dielectric heating applied to one-pot three component synthesis of a small library of thiazolidinones. Tetrahedron 59: 6121–6130. doi: 10.1016/S0040-4020(03)00954-2 Google Scholar
  72. 72.
    Arfan A, Bazureau JP (2005) Efficient combination of recyclable task specific ionic liquid and microwave dielectric heating for the synthesis of lipophilic esters. Org Process Res Dev 9: 743–748. doi: 10.1021/op058002x Google Scholar
  73. 73.
    Hu Y, Wei P, Huang H et al (2006) Microwave-assisted Gewald synthesis of 2-aminothiophenes using functional ionic liquid as soluble support. Heterocycles 68: 375–380. doi: 10.3987/COM-05-10628 Google Scholar
  74. 74.
    Li M, Sun ET, Wen LR et al (2007) Ionic liquid phase synthesis of tetrahydropyrano- and tetrahydrofuranoquinolines under microwave irradiation. J Comb Chem 9: 903–905. doi: 10.1021/cc070052l PubMedGoogle Scholar
  75. 75.
    Leadbeater NE, Torenius HM (2002) A study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem 67: 3145–3148. doi: 10.1021/jo016297g PubMedGoogle Scholar
  76. 76.
    Guo SR, Yuan YQ (2006) Significantly enhanced reactivities of the nucleophilic substitution reactions induced by microwaves in ionic liquid. Synth Commun 36: 1479–1484. doi: 10.1080/00397910600588280 Google Scholar
  77. 77.
    Ranu BC, Banerjee S, Jana R (2007) Ionic liquid as catalyst and solvent: the remarkable effect of a basic ionic liquid, [bmIm]OH on Michael addition and alkylation of active methylene compounds. Tetrahedron 63: 776–782. doi: 10.1016/j.tet.2006.10.077 Google Scholar
  78. 78.
    Zare A, Hasaninejad A, Zare ARM (2007) Zinc oxide as a new, highly efficient, green, and reusable catalyst for microwave-assisted Michael addition of sulfonamides to alpha,beta-unsaturated esters in ionic liquids. Can J Chem 85: 438–444. doi: 10.1139/V07-050 Google Scholar
  79. 79.
    Zare A, Hasaninejad A, Khalafi-Nezhad A (2007) Organic reactions in ionic liquids: MgO as efficient and reusable catalyst for the Michael addition of sulfonamides to alpha,beta-unsaturated esters under microwave irradiation. Arkivoc XIII: 105–115Google Scholar
  80. 80.
    Mayo KG, Nearhoof GH, Kiddle JJ (2002) Microwave-accelerated ruthenium-catalyzed Olefin metathesis. Org Lett 4: 1567–1570. doi: 10.1021/ol025789s PubMedGoogle Scholar
  81. 81.
    Dela Hoz A, Díaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34: 164–178. doi: 10.1039/b411438h Google Scholar
  82. 82.
    Garbacia S, Desai B, Lavastre O, Kappe CO (2003) Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect. J Org Chem 68: 9136–9139. doi: 10.1021/jo035135c Google Scholar
  83. 83.
    Datta GK, Vallin KSA, Larhed M (2003) A rapid microwave protocol for Heck vinylation of aryl chlorides under air. Mol Divers 7: 107–114. doi: 10.1023/B:MODI.0000006798.53091.a2 PubMedGoogle Scholar
  84. 84.
    Berthold H, Schotten T, Honig H (2002) Transfer hydrogenation in ionic liquids under microwave irradiation. Synthesis 1607–1610Google Scholar
  85. 85.
    McCarroll AJ, Sandham DA, Titcomb LR et al (2003) Study on high-temperature amination reactions of aromatic chlorides using discrete Palladium-N-heterocyclic carbene (NHC) complexes and in situ palladium/imidazolium salt protocols. Mol Divers 7: 115–123. doi: 10.1023/B:MODI.0000006863.14423.da PubMedGoogle Scholar
  86. 86.
    Brummond KM, Wach CK (2007) Environmentally benign solvent systems: toward a greener [4 + 2] cycloaddition process. Mini Rev Org Chem 4: 89–103. doi: 10.2174/157019307779815848 Google Scholar
  87. 87.
    Vidis A, Kuesters E, Sedeimeier G, Dyson PJ (2008) Effect of Lewis acids on the Diels–Alder reaction in ionic liquids with different activation modes. J Phys Org Chem 21: 264–270. doi: 10.1002/poc.1293 Google Scholar
  88. 88.
    Fuentes A, Martínez-Palou R, Jiménez-Vázquez HA (2005) Diels–Alder reactions of 2-oxazolidinone dienes in polar solvents using catalysis or non-conventional energy sources. Monatsh Chem 136: 177–192. doi: 10.1007/s00706-004-0244-0 Google Scholar
  89. 89.
    Brummond KM, Chen D (2005) Microwave-assisted intramolecular [2 + 2] allenic cycloaddition reaction for the rapid assembly of bicyclo[4.2.0]octa-1,6-dienes and bicyclo[5.2.0]nona-1,7-dienes. Org Lett 7: 3473–3475. doi: 10.1021/ol051115g PubMedGoogle Scholar
  90. 90.
    Lin YY, Tsai SC, Yu SJ (2008) Highly efficient and recyclable Au nanoparticle-supported palladium (II) interphase catalysts and microwave-assisted alkyne cyclotrimerization reactions in ionic liquids. J Org Chem 73: 4920–4928. doi: 10.1021/jo800524h PubMedGoogle Scholar
  91. 91.
    Schmidt B, Meid D, Kieser D (2007) Safe and fast tetrazole formation in ionic liquids. Tetrahedron 63: 492–496. doi: 10.1016/j.tet.2006.10.057 Google Scholar
  92. 92.
    Kusurkar RS, Naik NH, Naik PN (2008) Combination of AlCl3 ionic liquid, and microwaves: an efficient method for dehydration and 1,3-dipolar cycloaddition: an unusual observation in the presence of acrylonitrile. Synth Commun 38: 1952–1957. doi: 10.1080/00397910801997694 Google Scholar
  93. 93.
    Nguyen H-P, Matondo H, Babouléne M (2003) Ionic liquids as catalytic “green” reactants and solvents for nucleophilic conversion of fatty alcohols to alkyl halides. Green Chem 5: 303–305. doi: 10.1039/b303892k Google Scholar
  94. 94.
    Leadbeater NE, Torenius HM, Tye H (2003) Ionic liquids as reagents and solvents in conjunction with microwave heating: rapid synthesis of alkyl halides from alcohols and nitriles from aryl halides. Tetrahedron 59: 2253–2258. doi: 10.1016/S0040-4020(03)00214-X Google Scholar
  95. 95.
    Li LH, Pan ZL, Duan XH et al (2006) An environmentally benign procedure for the synthesis of aryl and aryvinyl nitriles assisted by microwave in ionic liquids. Synlett 2094–2098Google Scholar
  96. 96.
    Yen YH, Chu YH (2004) Synthesis of tetrahydro-beta-carbolinediketopiperazines in [bdmim][PF6 ionic liquid accelerated by controlled microwave heating. Tetrahedron Lett 45: 8137–8140. doi: 10.1016/j.tetlet.2004.09.056 Google Scholar
  97. 97.
    Srinivasan N, Ganesan A (2003) Highly efficient Lewis acid-catalysed Pictet–Spengler reactions discovered by parallel screening. Chem Commun 9: 16–917Google Scholar
  98. 98.
    Singh V, Kaur S, Sapehiyia V et al (2005) Microwave accelerated preparation of [bmim][HSO4] ionic liquid: an acid catalyst for improved synthesis of coumarins. Catal Commun 6: 57–60. doi: 10.1016/j.catcom.2004.10.011 Google Scholar
  99. 99.
    Zhou ZZ, Ji FQ, Cao M, Yang GF (2006) An efficient intramolecular Stetter reaction in room temperature ionic liquids promoted by microwave irradiation. Adv Synth Catal 348: 1826–1830. doi: 10.1002/adsc.200606156 Google Scholar
  100. 100.
    Leadbeater NE, Torenius HM, Tye H (2003) Microwave-assisted Mannich-type three-component reactions. Mol Divers 7: 135–144. doi: 10.1023/B:MODI.0000006822.51884.e6 PubMedGoogle Scholar
  101. 101.
    Hu Y, Chen ZC, Le ZG, Zheng QG (2004) Organic reactions in ionic liquids: ionic liquid promoted Knoevenagel condensation of aromatic aldehydes with (2-thio)barbituric acid. Synth Commun 34: 4521–4529. doi: 10.1081/SCC-200043210 Google Scholar
  102. 102.
    Ma JJ, Wang C, Zhang XH et al (2006) Synthesis of 5-arylidenebarbituric acid derivatives promoted by room temperature ionic liquid. Chin J Org Chem 26: 723–726Google Scholar
  103. 103.
    Arfan A, Paquin L, Bazureau JP (2007) Acidic task-specific ionic liquid as catalyst of microwave-assisted solvent-free Biginelli reaction. Russ J Org Chem 43: 1058–1064. doi: 10.1134/S1070428007070202 Google Scholar
  104. 104.
    Legeay JC, Vanden Eynde JJ, Bazureau JP (2005) Ionic liquid phase technology supported the three component synthesis of Hantzsch 1,4-dihydropyridines and Biginelli 3,4-dihydropyrimidin-2(1H)-ones under microwave dielectric heating. Tetrahedron 61: 12386–12397. doi: 10.1016/j.tet.2005.09.118 Google Scholar
  105. 105.
    Liao MC, Duan XH, Liang YM (2005) Ionic liquid/water as a recyclable medium for Tsuji–Trost reaction assisted by microwave. Tetrahedron Lett 46: 3469–3472. doi: 10.1016/j.tetlet.2005.04.002 Google Scholar
  106. 106.
    Pégot B, Vo-Thank G, Gori D, Loupy A (2004) First application of chiral ionic liquids in asymmetric Baylis–Hillman reaction. Tetrahedron Lett 45: 6425–6428. doi: 10.1016/j.tetlet.2004.06.134 Google Scholar
  107. 107.
    Vallin KSA, Emilsson VP, Larhed M, Hallberg A (2002) High-speed Heck reactions in ionic liquid with controlled microwave heating. J Org Chem 67: 6243–6246. doi: 10.1021/jo025942w PubMedGoogle Scholar
  108. 108.
    Xie X, Lu J, Cen B et al (2004) Pd/C-catalyzed Heck reaction in ionic liquid accelerated by microwave heating. Tetrahedron Lett 45: 809–811. doi: 10.1016/j.tetlet.2003.11.042 Google Scholar
  109. 109.
    Leadbeater NE, Williams VA, Barnard TM, Collins MJ (2006) Solvent-free, open-vessel microwave-promoted Heck couplings: from the mmol to the mol scale. Synlett 2953–2958 doi: 10.1055/s-2006-951512
  110. 110.
    Pei W, Shen C (2006) Heck arylation of cyclohexene promoted by ultrasonic and microwave in ionic liquid: a novel method of the synthesis of 3-naphthylcyclohexene. Chin Chem Lett 17: 1534–1536Google Scholar
  111. 111.
    Alacid E, Najera C (2008) Regioselective Heck reaction of N-vinylphthalimide: a general strategy for the synthesis of (E)-N-Styrylphthalimides and phenethylamines. Adv Synth Catal 50: 1316–1322. doi: 10.1002/adsc.200800074 Google Scholar
  112. 112.
    de Souza R, de Souza ALF, Fernandez TL et al (2008) Morita–Baylis–Hillman reaction in water/ionic liquids under microwave irradiation. Lett Org Chem 5: 379–382. doi: 10.2174/157017808784872052 Google Scholar
  113. 113.
    Chen IH, Young JN, Yu SJ (2004) Recyclable organotungsten Lewis acid and microwave assisted Diels–Alder reactions in water and in ionic liquids. Tetrahedron 60: 11903–11909. doi: 10.1016/j.tet.2004.09.078 Google Scholar
  114. 114.
    López I, Silvero G, Arévalo MJ (2007) Enhanced Diels–Alder reactions: on the role of mineral catalysts and microwave irradiation in ionic liquids as recyclable media. Tetrahedron 63: 2901–2906. doi: 10.1016/j.tet.2007.01.031 Google Scholar
  115. 115.
    Vander Eycken E, Appukkuttan P, De Broggraeve W et al (2002) High-speed microwave-promoted hetero-Diels–Alder reactions of 2(1H)-pyrazinones in ionic liquid doped solvents. J Org Chem 67: 7904–7907. doi: 10.1021/jo0263216 Google Scholar
  116. 116.
    Hakala U, Wähälä K (2006) Microwave-promoted synthesis of polyhydroxydeoxybenzoins in ionic liquids. Tetrahedron Lett 47: 8375–8378. doi: 10.1016/j.tetlet.2006.09.069 Google Scholar
  117. 117.
    Khalafi-Nezhad A, SoltaniRad MN, Khoshnood A (2004) Microwave-assisted ring opening of epoxides with pyrimidine nucleobases: a rapid entry into C-nucleoside synthesis. Synthesis 583–589Google Scholar
  118. 118.
    Deshayes S, Liagre M, Loupy A et al (1999) Microwave activation in phase transfer catalysis. Tetrahedron 55: 10851–10870. doi: 10.1016/S0040-4020(99)00601-8 Google Scholar
  119. 119.
    Bogdal D, Loupy A (2008) Application of microwave irradiation to phase-transfer catalyzed reactions. Org Process Res Dev 12: 710–722. doi: 10.1021/op8000542 Google Scholar
  120. 120.
    Hu Y, Chen ZC, Zheng QG (2004) Organic reactions in ionic liquids: N-alkylation of cyclic imides with alkyl halides promoted by potassium fluoride. J Chem Res 276–278Google Scholar
  121. 121.
    Angrish C, Kumar A, Chauhan SMS (2005) Microwave-assisted aromatic nucleophilic substitution reaction of chloronitrobenzenes with amines in ionic liquids. Indian J Chem B 44: 1515–1518Google Scholar
  122. 122.
    Shieh WC, Lozanov N, Repic O (2003) Accelerated benzylation reaction utilizing dibenzyl carbonate as an alkylating reagent. Tetrahedron Lett 44: 6943–6945. doi: 10.1016/S0040-4039(03)01711-8 Google Scholar
  123. 123.
    Lee JK, Kim DC, Song CE, Lee S (2003) Thermal behaviors of ionic liquids under microwave irradiation and their application on microwave-assisted catalytic Beckmann rearrangement of ketoximes. Synth Commun 33: 2301–2307. doi: 10.1081/SCC-120021511 Google Scholar
  124. 124.
    Hakkou H, Vanden Eynde JJ, Hamelin J, Bazureau JP (2004) Ionic liquid phase organic synthesis (IoLiPOS) methodology applied to the three component preparation of 2-thioxo tetrahydropyrimidin-4-(1H)-ones under microwave dielectric heating. Tetrahedron 60: 3745–3753. doi: 10.1016/j.tet.2004.03.026 Google Scholar
  125. 125.
    Peng Y, Song G (2004) Microwave-assisted clean synthesis of 6-aryl-2,4-diamino-1,3,5-triazines in. Tetrahedron Lett 45: 5313–5316. bmim. PF6. doi: 10.1016/j.tetlet.2004.04.195 Google Scholar
  126. 126.
    Peng YQ, Song GH (2007) Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal Commun 8: 111–114. doi: 10.1016/j.catcom.2006.05.031 Google Scholar
  127. 127.
    Xia M, Lu YD (2007) A novel neutral ionic liquid-catalyzed solvent-free synthesis of 2,4,5-trisubstituted imidazoles under microwave irradiation. J Mol Catal A 265: 205–208. doi: 10.1016/j.molcata.2006.10.004 Google Scholar
  128. 128.
    Guzmán-Lucero D, Likhanova N, Höpfl H, Likhachev D, Martínez-Palou R (2006) Efficient microwave-assisted synthesis of bisimides. Arkivoc X: 7–20Google Scholar
  129. 129.
    Hakala U, Wäkälä K (2007) Expedient deuterolabeling of polyphenols in ionic liquids—DCl/D2O under microwave irradiation. J Org Chem 72: 5817–5819. doi: 10.1021/jo070231p PubMedGoogle Scholar
  130. 130.
    Likhanova NV, Veloz MA, Höpfl H et al (2007) Microwave-assisted synthesis of 2-(2-pyridyl)azoles. Study of their corrosion inhibiting properties. J Heterocycl Chem 44: 145–153Google Scholar
  131. 131.
    Gómez B, Likhanova N, Domínguez-Aguilar MA, Martínez-Palou R et al (2006) A quantum chemical study of the inhibitive properties of 2 pyridyl-azoles. J Phys Chem B 110: 8928–8934. doi: 10.1021/jp057143y PubMedGoogle Scholar
  132. 132.
    Ranu BC, Jana R (2005) Catalysis by ionic liquid. A green protocol for the stereoselective debromination of vicinal-dibromides by [pmIm]BF 4(under microwave irradiation. J Org Chem 70): 8621–8624. doi: 10.1021/jo051373r Google Scholar
  133. 133.
    Ranu BC, Chattopadhyay K, Jana R (2007) Ionic liquid promoted selective debromination of α-bromoketones under microwave irradiation. Tetrahedron 63: 155–159. doi: 10.1016/j.tet.2006.10.035 Google Scholar
  134. 134.
    Sarda SR, Pathan MY, Paike VV et al (2006) A facile synthesis of flavones using recyclable ionic liquid under microwave irradiation. Arkivoc XVI: 43–48Google Scholar
  135. 135.
    Zhao H, Song Z, Cowins JV, Olubajo O (2008) Microwave-assisted esterification of N-acetyl-l-phenylalanine using modified Mukaiyama’s reagents: a new approach involving ionic liquids. Int J Mol Sci 9: 33–44. doi: 10.3390/ijms9010033 PubMedGoogle Scholar
  136. 136.
    Li XZ, Eli WJ, Li G (2008) Solvent-free synthesis of benzoic esters and benzyl esters in novel Bronsted acidic ionic liquids under microwave irradiation. Catal Commun 9: 2264–2268. doi: 10.1016/j.catcom.2008.05.015 Google Scholar
  137. 137.
    Wen XM, Wang HY, Li SL (2006) Aqueous [bmim][BF4] as green solvent in microwave-assisted organic reactions: clean synthesis of 1H-benzo[f]chromene derivatives. J Chem Res 776-778Google Scholar
  138. 138.
    Sun L, Pei W (2007) Researches on a novel method for fluorination of halopyridazine derivatives in ionic liquid. Chin J Chem 25: 1005–1007. doi: 10.1002/cjoc.200790160 Google Scholar
  139. 139.
    Trotzki R, Nuchter M, Ondruschka B (2003) Microwave assisted phosgenation—alcoholysis using triphosgene. Green Chem 5: 285–290. doi: 10.1039/b210895j Google Scholar
  140. 140.
    Estager J, Levengue JM, Turgis R (2006) Solventless and swift benzoin condensation catalyzed by 1-alkyl-3-methylimidazolium ionic liquids under microwave irradiation. J Mol Catal A 256: 261–264. doi: 10.1016/j.molcata.2006.04.055 Google Scholar
  141. 141.
    Ono F, Qiao K, Tomida D, Yokoyama C (2007) Rapid synthesis of cyclic carbonates from CO2 and epoxides under microwave irradiation with controlled temperature and pressure. J Mol Catal A 263: 223–226. doi: 10.1016/j.molcata.2006.08.037 Google Scholar
  142. 142.
    Shaabani A, Maleki A (2006) Rapid and efficient synthesis of metal-free phthalocyanine derivatives. J Porphyr Phthalocyan 10: 1253–1258Google Scholar
  143. 143.
    Vecchi A, Melai B, Marra A et al (2008) Microwave-enhanced ionothermal CuAAC for the synthesis of glycoclusters on a calix[4]arene platform. J Org Chem 73: 6437–6440. doi: 10.1021/jo800954z PubMedGoogle Scholar
  144. 144.
    Khosropour AR, Khodaei MM, Ghaderi S (2008) CAN/ [nbp]FeCl4 as reusable catalytic system for direct conversion of trimethylsilyl ethers to their acetates under microwave irradiation. J Iran Chem Soc 5: 407–412Google Scholar
  145. 145.
    Mallakpour S, Kowsari E (2006) Microwave heating in conjunction with ionic liquid as a novel method for the fast synthesis of optically active poly(amide-imide)s derived from N,N′-(4, 4’-hexafluoroisopropylidenediphthaloyl)-bis-l-methionine and various aromatic diamines. Iran Polym J 15: 239–247Google Scholar
  146. 146.
    Kolahdoozan M, Mallakpour S (2008) Microwave-accelerated preparation of aromatic polyamides containing phthalimide and S-valine pendant groups in ionic liquids. Iran Polym J 17: 531–539Google Scholar
  147. 147.
    Mallakpour S, Rafiee Z (2008) Safe and fast polyamidation of 5-[4-(2-phthalimidiylpropanoylamino)benzoylamino]lisophthalic acid with aromatic diamines in ionic liquid under microwave irradiation. Polymer (Guildf) 49: 3007–3013. doi: 10.1016/j.polymer.2008.05.013 Google Scholar
  148. 148.
    Mallakpour S, Rafiee Z (2008) Use of ionic liquid and microwave irradiation as a convenient, rapid and eco-friendly method for synthesis of novel optically active and thermally stable aromatic polyamides containing N-phthaloyl-l-alanine pendent group. Polym Deg Stab 93: 753–759. doi: 10.1016/j.polymdegradstab.2008.01.028 Google Scholar
  149. 149.
    Mallakpour S, Taghavi M (2008) Efficient and rapid synthesis of optically active polyamides in the presence of tetrabutylammonium bromide as ionic liquids under microwave irradiation. J Appl Polym Sci 109: 3603–3612. doi: 10.1002/app.28263 Google Scholar
  150. 150.
    Mallakpour S, Taghavi M (2008) Microwave heating coupled with ionic liquids: synthesis and properties of novel optically active polyamides, thermal degradation and electrochemical stability on multi-walled carbon nanotubes electrode. Polymer (Guildf) 49: 3239–3249. doi: 10.1016/j.polymer.2008.06.001 Google Scholar
  151. 151.
    Liao LQ, Zhang C, Gong SQ (2006) Microwave-assisted ring-opening polymerization of ε-caprolactone in the presence of ionic liquid. Macromol Rapid Commun 27: 2060–2064. doi: 10.1002/marc.200600591 Google Scholar
  152. 152.
    Liao LQ, Zhang C, Gong SQ (2007) Microwave-assisted ring-opening polymerization of trimethylene carbonate in the presence of ionic liquid. J Polym Sci A 45: 5857–5863. doi: 10.1002/pola.22337 Google Scholar
  153. 153.
    Guerrero-Sánchez C, Hoogenboom R, Schubert US (2006) Fast and “green” living cationic ring opening polymerization of 2-ethyl-2-oxazoline in ionic liquids under microwave irradiation. Chem Commun 3797–3799. doi: 10.1039/b608364a
  154. 154.
    Taubert A, Li Z (2007) Inorganic materials from ionic liquids. Dalton Trans 723–727. doi: 10.1039/b616593a
  155. 155.
    Jacob DS, Bitton L, Grinblat J et al (2006) Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides. Chem Mater 18: 3162–3168. doi: 10.1021/cm060782g Google Scholar
  156. 156.
    Parnham ER, Morris RE (2007) Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic–organic hybrids. Acc Chem Res 40: 1005–1013. doi: 10.1021/ar700025k PubMedGoogle Scholar
  157. 157.
    Cooper ER, Andrews CD, Wheatley PS et al (2004) Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 430: 1012–1016. doi: 10.1038/nature02860 PubMedGoogle Scholar
  158. 158.
    Lin Z, Wragg DS, Morris RE (2006) Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal synthesis. Chem Commun 2021–2023 doi: 10.1039/b600814c
  159. 159.
    Morris RE (2008) Ionic liquids and microwave—making zeolites for emerging applications. Angew Chem Int Ed Engl 47: 442–444. doi: 10.1002/anie.200704888 PubMedGoogle Scholar
  160. 160.
    Xu YP, Tian ZJ, Wang SJ et al (2006) Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves. Angew Chem Int Ed Engl 45: 3965–3970. doi: 10.1002/anie.200600054 PubMedGoogle Scholar
  161. 161.
    Xu YP, Tian ZJ, Wang SJ et al (2006) Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves. Angew Chem 118: 4069–4074. doi: 10.1002/ange.200600054 Google Scholar
  162. 162.
    Cai R, Sun MW, Chen ZW et al (2008) Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings. Angew Chem Int Ed Engl 47: 525–528. doi: 10.1002/anie.200704003 PubMedGoogle Scholar
  163. 163.
    Cai R, Sun MW, Chen ZW et al (2008) Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings. Angew Chem Int Ed Engl 120: 535–528. doi: 10.1002/ange.200704003 Google Scholar
  164. 164.
    Liu YH, Lin CW, Chang MC et al (2008) The hydrothermal analogy role of ionic liquid in transforming amorphous TiO2 to anatase TiO2: elucidating effects of ionic liquids and heating method. J Mater Sci 43: 5005–5013. doi: 10.1007/s10853-008-2740-9 Google Scholar
  165. 165.
    Zhu YJ, Wang WW, Qi RJ, Hu XL (2004) Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed Engl 43: 1410–1414. doi: 10.1002/anie.200353101 PubMedGoogle Scholar
  166. 166.
    Jiang Y, Zhu YJ, Chen GF (2006) Synthesis of Bi2Se3 nanosheets by microwave heating using an ionic liquid. Cryst Growth Des 6: 2174–2176. doi: 10.1021/cg060219a Google Scholar
  167. 167.
    Jhung SH, Jin TH, Hwang YK, Chang JS (2007) Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation. Chem Eur J 13: 4410–4417. doi: 10.1002/chem.200700098 Google Scholar
  168. 168.
    Buhler G, Feldmann C (2006) Microwave-assisted synthesis of luminescent LaPO4: Ce,Tb nanocrystals in ionic liquids. Angew Chem Int Ed Engl 45: 4864–4867. doi: 10.1002/anie.200600244 PubMedGoogle Scholar
  169. 169.
    Buhler G, Stay M, Feldmann C (2007) Ionic liquid-based approach to doped nanoscale oxides: LaPO4:RE (RE = Ce, Tb, Eu) and In2O3:Sn (ITO). Green Chem 9: 924–926. doi: 10.1039/b617107a Google Scholar
  170. 170.
    Buhler G, Zharkouskaya A, Feldmann C (2008) Ionic liquid based approach to nanoscale functional materials. Solid State Ion 10: 461–465Google Scholar
  171. 171.
    Buhler G, Tholmann D, Feldmann C (2007) One-pot synthesis of highly conductive indium tin oxide nanocrystals. Adv Mater 19: 2224–2227. doi: 10.1002/adma.200602102 Google Scholar
  172. 172.
    Buhler G, Feldmann C (2007) Transparent luminescent layers via ionic liquid-based approach to LaPO4:RE (RE = Ce, Tb, Eu) dispersions. Appl Phys A 87: 631–636. doi: 10.1007/s00339-007-3865-4 Google Scholar
  173. 173.
    Park H, Yang SH, Jun YS et al (2007) Facile route to synthesize large-mesoporous gamma-alumina by room temperature ionic liquids. Chem Mater 19: 535–542. doi: 10.1021/cm0620887 Google Scholar
  174. 174.
    Liu ZM, Sun ZY, Han BX et al (2006) Microwave-assisted synthesis of Pt nanocrystals and deposition on carbon nanotubes in ionic liquids. J Nanosci Nanotechnol 6: 175–179PubMedGoogle Scholar
  175. 175.
    Wang WW, Zhu YJ, Cheng GF, Huang YH (2006) Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers. Mater Lett 60: 609–612. doi: 10.1016/j.matlet.2005.09.056 Google Scholar
  176. 176.
    Cao JM, Wang J, Fang BQ et al (2004) Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperature ionic liquid. Chem Lett 33: 1332–1333. doi: 10.1246/cl.2004.1332 Google Scholar
  177. 177.
    Wang WW, Zhu YJ (2004) Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg Chem Commun 7: 1003–1005. doi: 10.1016/j.inoche.2004.06.014 Google Scholar
  178. 178.
    Wang J, Cao JM, Fang BQ et al (2005) Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids. Mater Lett 59: 1405–1408. doi: 10.1016/j.matlet.2004.11.062 Google Scholar
  179. 179.
    Dong WS, Li MY, Liu CL, Lin FQ, Liu ZT (2008) Novel ionic liquid assisted synthesis of SnO2 microspheres. J Colloid Interface Sci 319: 115–122. doi: 10.1016/j.jcis.2007.08.031 PubMedGoogle Scholar
  180. 180.
    Wang WW, Zhu YJ (2005) Synthesis of PbCrO4 and Pb2CrO5 rods via a microwave-assisted ionic liquid method. Cryst Growth Des 5: 505–507. doi: 10.1021/cg0497546 Google Scholar
  181. 181.
    Jiang Y, Zhu YJ (2004) Microwave-assisted synthesis of nanocrystalline metal sulfides using an ionic liquid. Chem Lett 33: 1390–1391. doi: 10.1246/cl.2004.1390 Google Scholar
  182. 182.
    Jiang Y, Zhu YJ (2005) Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid. J Phys Chem B 109: 4361–4364. doi: 10.1021/jp044350+ PubMedGoogle Scholar
  183. 183.
    Ren L, Meng L, Lu Q et al (2008) Fabrication of gold nano- and microstructures in ionic liquids-A remarkable anion effect. J Colloid Interface Sci 323: 260–266. doi: 10.1016/j.jcis.2008.04.016 PubMedGoogle Scholar
  184. 184.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124: 4974–4975. doi: 10.1021/ja025790m PubMedGoogle Scholar
  185. 185.
    Liu Y, Wang H, Xu C et al (2005) Ionic liquids: novel solvents for petroleum asphaltenes. Chin J Chem Eng 13: 564–567Google Scholar
  186. 186.
    Zhu SD, Wu YX, Chen QM et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8: 325–327. doi: 10.1039/b601395c Google Scholar
  187. 187.
    Sur UK, Marken F, Coles BA, Compton RG, Dupont J (2004) Microwave activation in ionic liquids induces high temperature-high speed electrochemical processes. Chem Commun (Camb) 24: 2816–2817Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Programa de Ingeniería MolecularInstituto Mexicano del PetróleoMexicoMexico

Personalised recommendations