Molecular Diversity

, Volume 14, Issue 1, pp 109–121 | Cite as

Synthesis, molecular docking and biological evaluation as HDAC inhibitors of cyclopeptide mimetics by a tandem three-component reaction and intramolecular [3+2] cycloaddition

  • Tracey Pirali
  • Valeria Faccio
  • Riccardo Mossetti
  • Ambra A. Grolla
  • Simone Di Micco
  • Giuseppe Bifulco
  • Armando A. Genazzani
  • Gian Cesare Tron
Full-Length Paper


Novel macrocyclic peptide mimetics have been synthesized by exploiting a three-component reaction and an azide–alkyne [3 + 2] cycloaddition. The prepared compounds were screened as HDAC inhibitors allowing us to identify a new compound with promising biological activity. In order to rationalize the biological results, computational studies have also been performed.


HDAC Multicomponent reactions α-isocyanoacetamide Macrocycles Molecular modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11030_2009_9153_MOESM1_ESM.doc (1 mb)
ESM 1 (DOC 1.01 MB)


  1. 1.
    Verdin E (2006) Histone deacetylases—-transcriptional regulation and other cellular functions. Humana Press Inc., Totowa, NJGoogle Scholar
  2. 2.
    Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5: 37–50. doi: 10.1038/nrd1930 CrossRefPubMedGoogle Scholar
  3. 3.
    Paris M, Porcelloni M, Binaschi M, Fattori D (2008) Histone deacetylase inhibitors: from bench to clinic. J Med Chem 51: 1505–1529. doi: 10.1021/jm7011408 CrossRefPubMedGoogle Scholar
  4. 4.
    Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25: 84–90. doi: 10.1038/nbt1272 CrossRefPubMedGoogle Scholar
  5. 5.
    Finnin MS, Donigian JR, Cohen A, Richon M, Rifkind RA (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401: 188–193. doi: 10.1038/43710 CrossRefPubMedGoogle Scholar
  6. 6.
    Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD et al (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12: 1325–1334. doi: 10.1016/j.str.2004.04.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Sternson SM, Wong JC, Grozinger CM, Schreiber SL (2001) Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org Lett 3: 4239–4242. doi: 10.1021/ol016915f CrossRefPubMedGoogle Scholar
  8. 8.
    Biel M, Wascholowski V, Giannis A (2005) Epigenetics-an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem Int Ed Engl 44: 3186–3216. doi: 10.1002/anie.200461346 CrossRefPubMedGoogle Scholar
  9. 9.
    Driggers EM, Hale SP, Lee J, Terrent NK (2008) The exploration of macrocycles for drug discovery—an underexploited structural class. Nat Rev Drug Discov 7: 608–624. doi: 10.1038/nrd2590 CrossRefPubMedGoogle Scholar
  10. 10.
    Armarego WLF, Chai CLL (2003) Purification of laboratory chemicals. Butterworth-Heinemann, Elsevier Science, USAGoogle Scholar
  11. 11.
    Govoni M, Li HD, El-Atmioui D, Menge WMPB, Timmerman H et al (2006) A chemical switch for the modulation of the functional activity of higher homologues of istamine on the human istamine H3 receptor: effect of various substitutions at the primary amino function. J Med Chem 49: 2549–2557. doi: 10.1021/jm0504353 CrossRefPubMedGoogle Scholar
  12. 12.
    El Fangour S, Guy A, Depres V, Vidal JP, Rossi JC et al (2004) Total synthesis of the eight diastereomers of the syn-anti-syn phytoprostanes F1 types I and II. J Org Chem 69: 2498–2503. doi: 10.1021/jo035638i CrossRefPubMedGoogle Scholar
  13. 13.
    Pirali T, Tron GC, Zhu J (2006) One-pot synthesis of macrocycles by a tandem three-component reaction and intramolecular [3+2] cycloaddition. Org Lett 8: 4145–4148. doi: 10.1021/ol061782p CrossRefPubMedGoogle Scholar
  14. 14.
    MacroModel version 8.5, Schrödinger LLC, New York, NY, 2003Google Scholar
  15. 15.
    Mohamadi F, Richards NG, Guida WC, Liskamp R, Lipton M et al (1990) MacroModel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11: 440–467. doi: 10.1002/jcc.540110405 CrossRefGoogle Scholar
  16. 16.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112: 6127–6129. doi: 10.1021/ja00172a038 CrossRefGoogle Scholar
  17. 17.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE et al (1998) Automated docking using Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19: 1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B CrossRefGoogle Scholar
  18. 18.
    Stote RH, Karplus M (1995) Zinc binding in proteins and solution: a simple but accurate nonbonded representation. Proteins 23: 12–31. doi: 10.1002/prot.340230104 CrossRefPubMedGoogle Scholar
  19. 19.
    Maulucci N, Chini MG, Di Micco S, Izzo I, Cafaro E et al (2007) Molecular insights into azumamide E histone deacetylases inhibitory activity. J Am Chem Soc 129: 3007–3012. doi: 10.1021/ja0686256 CrossRefPubMedGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2003) Gaussian 03, revision B.05. Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  21. 21.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11: 361–373. doi: 10.1002/jcc.540110311 Google Scholar
  22. 22.
    Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38: 305–320. doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  23. 23.
    Bajai C, Pascucci V, Schikore D (1996) Fast isocontouring for improved interactivity. In: Proceedings of ACM Siggrapf/IEEE symposium on volume visualization, pp 39–36. ACM Press, New YorkGoogle Scholar
  24. 24.
    Nare B, Allocco JJ, Kuningas R, Galuska S, Myers RW et al (1999) Development of a scintillation proximity assay for histone deacetylase using a biotinylated peptide derived from histone-H4. Anal Biochem 267: 390–396. doi: 10.1006/abio.1998.3038 CrossRefPubMedGoogle Scholar
  25. 25.
    Janvier P, Sun X, Bienaymé H, Zhu J (2002) Ammonium chloride-promoted four-component synthesis of pyrrolo[3,4-b]pyridin-5-one. J Am Chem Soc 124: 2560–2567. doi: 10.1021/ja017563a CrossRefPubMedGoogle Scholar
  26. 26.
    Cafici L, Pirali T, Condorelli F, Del Grosso E, Massarotti A et al (2008) Solution-phase parallel synthesis and biological evaluation of combretatriazoles. J Combust Chem 5: 732–740. doi: 10.1021/cc800090d CrossRefGoogle Scholar
  27. 27.
    Wang DF, Helquist P, Wiech NL, Wiest O (2005) Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class I histone deacetylases. J Med Chem 48: 6936–6947. doi: 10.1021/jm0505011 CrossRefPubMedGoogle Scholar
  28. 28.
    Park H, Lee S (2004) Homology modeling, force field design, amd free energy simulation to optimize the activities of histone deacetylase inhibitors. J Comput Aided Mol Des 18: 375–388. doi: 10.1007/s10822-004-2283-3 CrossRefPubMedGoogle Scholar
  29. 29.
    Di Micco S, Terracciano I, Bruno M, Rodriquez M, Riccio R et al (2008) Molecular modeling studies toward the structural optimization of new cyclopeptide-based HDAC inhibitors modeled on the natural product FR235222. Bioorg Med Chem 16: 8635–8642. doi: 10.1016/j.bmc.2008.08.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tracey Pirali
    • 1
  • Valeria Faccio
    • 1
  • Riccardo Mossetti
    • 1
  • Ambra A. Grolla
    • 1
  • Simone Di Micco
    • 2
  • Giuseppe Bifulco
    • 2
  • Armando A. Genazzani
    • 1
  • Gian Cesare Tron
    • 1
  1. 1.Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche and Drug and Food Biotechnology Center, DiSCAFFUniversità degli Studi del Piemonte Orientale “A. Avogadro”NovaraItaly
  2. 2.Dipartimento di Scienze FarmaceuticheUniversità di SalernoFiscianoItaly

Personalised recommendations