Advertisement

Molecular Diversity

, 13:71 | Cite as

Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature

  • C. Oliver Kappe
  • Doris Dallinger
Review

Abstract

Direct and rapid heating by microwave irradiation in combination with sealed vessel processing in many cases enables reactions to be carried out in a fraction of the time generally required using conventional conditions. This makes microwave chemistry an ideal tool for rapid reaction scouting and optimization of conditions, allowing very rapid progress through hypotheses–experiment–results iterations. The speed at which multiple variations of reaction conditions can be performed allows a morning discussion of “What should we try?” to become an after-lunch discussion of “What were the results” Not surprisingly, therefore, many scientists both in academia and industry have turned to microwave synthesis as a front-line methodology for their projects. In this review, more than 220 published examples of microwave-assisted synthetic organic transformations from the 2004 to 2008 literature are discussed. An additional ca. 500 reaction schemes are presented in the Electronic Supplementary Material, providing the reader with an overall number of ca. 930 references in this fast-moving and exciting field.

Keywords

Combinatorial chemistry Enabling technologies High-temperature reactions Microwave dielectric heating Organic synthesis 

Supplementary material

11030_2009_9138_MOESM1_ESM.doc (17.6 mb)
ESM 1 (DOC 17.6 MB)

References

  1. 1.
    Gedye R, Smith F and Westaway K et al (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27: 279–282CrossRefGoogle Scholar
  2. 2.
    Giguere RJ, Bray TL, Duncan SM and Majetich G (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27: 4945–4958 CrossRefGoogle Scholar
  3. 3.
    Loupy A (ed) (2002) Microwaves in organic synthesis. Wiley-VCH, Weinheim Google Scholar
  4. 4.
    Loupy A (ed) (2002) Microwaves in organic synthesis, 2nd edn. Wiley--VCH, Weinheim Google Scholar
  5. 5.
    Hayes BL (2002). Microwave synthesis: chemistry at the speed of light. CEM, Matthews, NC Google Scholar
  6. 6.
    McGowan C and Leadbeater NE (2006). Clean, fast organic chemistry: microwave-assisted laboratory experiments. CEM, Matthews, NC Google Scholar
  7. 7.
    Bogdal D (2005). Microwave-assisted organic synthesis. One hundred reaction procedures. Elsevier, Oxford Google Scholar
  8. 8.
    Tierney JP, Lidström P (eds) (2005) Microwave assisted organic synthesis. Blackwell, Oxford Google Scholar
  9. 9.
    Larhed M, Olofsson K (eds) (2006) Microwave methods in organic synthesis. Springer, Berlin Google Scholar
  10. 10.
    Van der Eycken E, Kappe CO (eds) (2006) Microwave-assisted synthesis of heterocycles. Springer, Berlin Google Scholar
  11. 11.
    Kappe CO and Stadler A (2005). Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  12. 12.
    Kappe CO, Dallinger D and Murphree SS (2009). Practical microwave synthesis for organic chemists—strategies instruments and protocols. Wiley-VCH, Weinheim Google Scholar
  13. 13.
    Kappe CO (ed) (2003) Microwaves in combinatorial and highthroughput synthesis. Mol Divers 7:95-07Google Scholar
  14. 14.
    Van der Eycken E, Van der Eycken J (eds) (2004) Microwaves in combinatorial and high-throughput synthesis. QSAR Comb Sci 23:823-86Google Scholar
  15. 15.
    Leadbeater NE (ed) (2006) Microwave-assisted synthesis. Tetrahedron 62:4623-732Google Scholar
  16. 16.
    de la Hoz A, Díaz-Ortiz A (eds) (2007) The use of microwaves in high throughput synthesis. Comb Chem High Throughput Screen 10:773-34Google Scholar
  17. 17.
    Stuerga D (2006) Microwave-material interactions and dielectric properties, key ingredients for mastery of chemical microwave processes. In: Loupy A (ed) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim, pp 1–61 Google Scholar
  18. 18.
    Michael D and Mingos P (2005). Theoretical aspects of microwave dielectric heating. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 1–22. Blackwell, Oxford Google Scholar
  19. 19.
    Stuerga D and Delmotte M (2002). Wave-material interactions, microwave technology and equipment. In: Loupy, A (eds) Microwaves in organic synthesis, pp 1–33. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  20. 20.
    Gabriel C, Gabriel S and Grant EH et al (1998). Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27: 213–224 CrossRefGoogle Scholar
  21. 21.
    Mingos DMP and Baghurst DR (1991). Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev 20: 1–47 CrossRefGoogle Scholar
  22. 22.
    Perreux L, Loupy A (2006) Nonthermal effects of microwaves in organic synthesis. In: Loupy A (ed) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim, pp 134–218 Google Scholar
  23. 23.
    Loupy A and Varma RS (2006). Microwave effects in organic synthesis. Mechanistic and reaction medium considerations. Chim Oggi 24: 36–40 Google Scholar
  24. 24.
    de La Hoz A, Díaz-Ortiz A and Moreno A (2006). Selectivity under the action of microwave irradiation. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 219–277. Wiley-VCH, Weinheim Google Scholar
  25. 25.
    de La Hoz A, Díaz-Ortiz A and Moreno A (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34: 164–178 PubMedCrossRefGoogle Scholar
  26. 26.
    de La Hoz A, Díaz-Ortiz A and Moreno A (2004). Selectivity in organic synthesis under microwave irradiation. Curr Org Chem 8: 903–918 CrossRefGoogle Scholar
  27. 27.
    Panunzio M, Campana E and Martelli G et al (2004). Microwave in organic synthesis: myth or reality?. Mater Res Innov 8: 27–31 Google Scholar
  28. 28.
    Perreux L and Loupy A (2002). Nonthermal effects of microwaves in organic synthesis. In: Loupy, A (eds) Microwaves in organic synthesis, pp 61–114. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  29. 29.
    Kuhnert N (2002). Microwave-assisted reactions in organic synthesis—are there any nonthermal microwave effects?. Angew Chem Int Ed 41: 1863–1866 CrossRefGoogle Scholar
  30. 30.
    Strauss CR (2002). Microwave-assisted reactions in organic synthesis—are there any nonthermal microwave effects?. Comments Angew Chem Int Ed 41: 3589–3591 CrossRefGoogle Scholar
  31. 31.
    Perreux L and Loupy A (2001). A tentative rationalization of microwave effects in organic synthesis according to the reaction medium and mechanistic considerations. Tetrahedron 57: 9199–9223 CrossRefGoogle Scholar
  32. 32.
    Loupy A, Perreux L and Liagre M et al (2001). Reactivity and selectivity under microwaves in organic chemistry. Relation with medium effects and reaction mechanisms. Pure Appl Chem 73: 161–166 CrossRefGoogle Scholar
  33. 33.
    Ondruschka B, Bonrath W, Stuerga D (2006) Development and design of laboratory and pilot scale reactors for microwaveassisted chemistry. In: Loupy A (ed) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim, pp 62–107 Google Scholar
  34. 34.
    Le Ngoc T, Roberts BA and Strauss CR (2006). Roles of pressurized microwave reactors in the development of microwave-assisted organic chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 108–133. Wiley-VCH, Weinheim Google Scholar
  35. 35.
    Strauss CR (2002). Microwave-assisted organic chemistry in pressurized reactors. In: Loupy, A (eds) Microwaves in organic synthesis, pp 35–60. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  36. 36.
    Ondruschka B and Bonrath W (2006). Microwave-assisted chemistry—a stock taking. Chimia 60: 326–329 CrossRefGoogle Scholar
  37. 37.
    Stankiewicz A (2006). Alternative sources and forms of energy for intensification of chemical and biochemical processes. Chem Eng Res Des 84: 511–521 CrossRefGoogle Scholar
  38. 38.
    Nüchter M, Ondruschka B and Weiß D et al (2005). Contribution to the qualification of technical microwave systems and to the validation of microwave-assisted reactions and processes. Chem Eng Technol 28: 871–881 CrossRefGoogle Scholar
  39. 39.
    Nüchter M, Ondruschka B and Bonrath W et al (2004). Microwave assisted synthesis—a critical technology overview. Green Chem 6: 128–141 CrossRefGoogle Scholar
  40. 40.
    Nüchter M, Müller U and Ondruschka B et al (2003). Microwave-assisted chemical reactions. Chem Eng Technol 26: 1207–1216 CrossRefGoogle Scholar
  41. 41.
    Kappe CO (2008). Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev 37: 1127–1139 CrossRefGoogle Scholar
  42. 42.
    Kappe CO (2006). Microwave-assisted chemistry. In: Taylor, JB and Triggle, DJ (eds) Comprehensive medicinal chemistry II, pp 837–860. Elsevier, Oxford Google Scholar
  43. 43.
    Varma RS (2006). Microwave technology—chemical synthesis applications. In: Seidel, A (eds) Kirk-Othmer encyclopedia of chemical technology, 5th edn. pp 538–594. Wiley-VCH, WeinheimGoogle Scholar
  44. 44.
    Kappe CO (2006). The use of microwave irradiation in organic synthesis. From laboratory curiosity to standard practice in twenty years. Chimia 60: 308–312 CrossRefGoogle Scholar
  45. 45.
    de La Hoz A, Díaz-Ortiz A and Moreno A (2005). Activation of organic reactions by microwaves. Adv Org Synth 1: 119–171 CrossRefGoogle Scholar
  46. 46.
    Romanova NN, Gravis AG and Zyk NV (2005). Microwave irradiation in organic synthesis. Russ Chem Rev 74: 969–1013 CrossRefGoogle Scholar
  47. 47.
    Kuznetsov DV, Raev VA and Kuranov GL et al (2005). Microwave activation in organic synthesis. Russ J Org Chem 41: 1719–1749 CrossRefGoogle Scholar
  48. 48.
    Kappe CO (2004). Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43: 6250–6284 CrossRefGoogle Scholar
  49. 49.
    Hayes BL (2004). Recent advances in microwave-assisted synthesis. Aldrichim Acta 37: 66–77 Google Scholar
  50. 50.
    Gedye RN (2002). Organic synthesis using microwave in homogeneous media. In: Loupy, A (eds) Microwaves in organic synthesis, pp 115–146. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  51. 51.
    Lidström P, Tierney J, Wathey B and Westman J (2001). Microwave assisted organic synthesis: a review. Tetrahedron 57: 9225–9283 CrossRefGoogle Scholar
  52. 52.
    Krstenansky JL and Cotterill I (2000). Recent advances in microwave-assisted organic syntheses. Curr Opin Drug Discov Dev 4: 454–461 Google Scholar
  53. 53.
    Bose AK, Banik BK and Lavlinskaia N et al (1997). MORE chemistry in a microwave. Chemtech 27: 18–24 Google Scholar
  54. 54.
    Caddick S (1995). Microwave assisted organic reactions. Tetrahedron 51: 10403–10432 CrossRefGoogle Scholar
  55. 55.
    Strauss CR and Trainor RW (1995). Developments in microwave-assisted organic chemistry. Aust J Chem 48: 1665–1692 CrossRefGoogle Scholar
  56. 56.
    Abramovitch RA (1991). Applications of microwave energy in organic chemistry. A review. Org Prep Proced Int 23: 685–711 CrossRefGoogle Scholar
  57. 57.
    Varma RS and Ju Y (2006). Organic synthesis using microwave and supported reagents. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 362–415. Wiley-VCH, Weinheim Google Scholar
  58. 58.
    Bougrin K, Loupy A and Soufiaoui M (2005). Microwave-assisted solvent-free heterocyclic synthesis. J Photochem Photobiol C 6: 139–167 CrossRefGoogle Scholar
  59. 59.
    Loupy A (2004). Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. C R Chim 7: 103–112 Google Scholar
  60. 60.
    Varma RS (2002). Organic synthesis using microwaves and supported reagents. In: Loupy, A (eds) Microwaves in organic synthesis, pp 181–218. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  61. 61.
    Varma RS (2002). Clay and clay-supported reagents in organic synthesis. Tetrahedron 58: 1235–1255 CrossRefGoogle Scholar
  62. 62.
    Pillai UR, Sahle-Demessie E and Varma RS (2002). Environmentally friendlier organic transformations on mineral supports under non-traditional conditions. J Mater Chem 12: 3199–3207 CrossRefGoogle Scholar
  63. 63.
    Varma RS (2001). Solvent-free accelerated organic syntheses using microwaves. Pure Appl Chem 73: 193–198 CrossRefGoogle Scholar
  64. 64.
    Kidwai M (2001). Dry media reactions. Pure Appl Chem 73: 147–151 CrossRefGoogle Scholar
  65. 65.
    Varma RS (1999). Solvent-free organic syntheses. Green Chem 1: 43–55 CrossRefGoogle Scholar
  66. 66.
    Loupy A, Petit A, Hamelin J et al (1998) New solvent-free organic synthesis using focused microwaves. Synthesis: 1213-234Google Scholar
  67. 67.
    Besson T, Thiéry V and Dubac J (2006). Microwave-assisted reactions on graphite. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 416–455. Wiley-VCH, Weinheim Google Scholar
  68. 68.
    Laporterie A, Marquié J and Dubac J (2002). Microwave-assisted reactions on graphite. In: Loupy, A (eds) Microwaves in organic synthesis, pp 219–252. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  69. 69.
    Bogdal D and Loupy A (2008). Application of microwave irradiation to phase-transfer catalyzed reactions. Org Process Res Dev 12: 710–722 CrossRefGoogle Scholar
  70. 70.
    Loupy A, Petit A and Bogdal D (2006). Microwaves and phase-transfer catalysis. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 278–326. Wiley-VCH, Weinheim Google Scholar
  71. 71.
    Loupy A, Petit A and Bogdal D (2002). Microwave and phase- transfer catalysis. In: Loupy, A (eds) Microwaves in organic synthesis, pp 147–180. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  72. 72.
    Petricci E and Taddei M (2007). Microwave assisted reactions with gas reagents. Chim Oggi 25: 40–45 Google Scholar
  73. 73.
    Polshettiwar V and Varma RS (2008). Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41: 629–639 PubMedCrossRefGoogle Scholar
  74. 74.
    Polshettiwar V and Varma RS (2007). Greener and sustainable approaches to the synthesis of pharmaceutically active heterocycles. Curr Opin Drug Discov Dev 10: 723–737 Google Scholar
  75. 75.
    Strauss CR and Varma RS (2006). Microwaves in green and sustainable chemistry. Top Curr Chem 266: 199–231 CrossRefGoogle Scholar
  76. 76.
    Varma RS (2006). Greener organic syntheses under non-traditional conditions. Indian J Chem Sect B 45: 2305–2312 Google Scholar
  77. 77.
    Lévêque JM and Cravotto G (2006). Microwaves, power ultrasound and ionic liquids. A new synergy in green organic synthesis. Chimia 60: 313–320 CrossRefGoogle Scholar
  78. 78.
    Roberts BA and Strauss CR (2005). Toward rapid, “green” predictable microwave-assisted synthesis. Acc Chem Res 38: 653–661 PubMedCrossRefGoogle Scholar
  79. 79.
    Strauss CR (2005). Microwave technologies: synthesis and the “greening” of chemistry. Chem Aust 72: 9–11 Google Scholar
  80. 80.
    Carrillo JR, Díaz-Ortiz A and de La Hoz A et al (2003). Application of microwave irradiation, solid supports and catalysts in environmentally benign heterocyclic chemistry. In: Attanasi, OA and Spinelli, D (eds) Targets in heterocyclic systems, pp 64–85. Springer, Berlin Google Scholar
  81. 81.
    Bose AK, Manhas MS, Ganguly SN et al (2002) MORE chemistry for less pollution: applications for process development. Synthesis: 1578-591Google Scholar
  82. 82.
    Strauss CR (2002). Application of microwaves for environmentally benign organic chemistry. In: Clark, J and Macquarrie, D (eds) Handbook of green chemistry and technology, pp 397–415. Blackwell, Oxford CrossRefGoogle Scholar
  83. 83.
    Varma RS (2002). Advances in green chemistry: chemical syntheses using microwave irradiation. Kavitha, Bangalore Google Scholar
  84. 84.
    Strauss CR (1999). A combinatorial approach to the development of environmentally benign organic chemical preparations. Aust J Chem 52: 83–96 CrossRefGoogle Scholar
  85. 85.
    Polshettiwar V and Varma RS (2008). Aqueous microwave chemistry. A clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37: 1546–1557 PubMedCrossRefGoogle Scholar
  86. 86.
    Dallinger D and Kappe CO (2007). Microwave-assisted synthesis in water as solvent. Chem Rev 107: 2563–2591 PubMedCrossRefGoogle Scholar
  87. 87.
    Leadbeater NE (2005). Fast, easy, clean chemistry by using water as a solvent and microwave heating: the Suzuki coupling as an illustration. Chem Commun 23: 2881–2902 CrossRefGoogle Scholar
  88. 88.
    Lévêque JM, Estager J and Draye M et al (2007). Synthesis of ionic liquids using non conventional activation methods. An overview. Monatsh Chem 138: 1103–1113 CrossRefGoogle Scholar
  89. 89.
    Leadbeater NE and Torenius HM (2006). Microwaves and ionic liquids. In: Loupy, A (eds) Microwaves in organic synthesis, pp 327–361. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  90. 90.
    Habermann J, Ponzi S and Ley SV (2005). Organic chemistry in ionic liquids using non-thermal energy-transfer processes. Mini Rev Org Chem 2: 125–137 CrossRefGoogle Scholar
  91. 91.
    Leadbeater NE, Torenius HM and Tye H (2004). Microwave-promoted organic synthesis using ionic liquids: a mini review. Comb Chem High Throughput Screen 7: 511–528 Google Scholar
  92. 92.
    Alcázar J, Diels G and Schoentjes B (2007). Microwave assisted medicinal chemistry. Mini Rev Med Chem 7: 345–369 PubMedCrossRefGoogle Scholar
  93. 93.
    Chighine A, Sechi G and Bradley M (2007). Tools for efficient high-throughput synthesis. Drug Discov Today 12: 459–464 PubMedCrossRefGoogle Scholar
  94. 94.
    Mavandadi F and Pilotti A (2006). The impact of microwave-assisted organic synthesis in drug discovery. Drug Discov Today 11: 165–174 PubMedCrossRefGoogle Scholar
  95. 95.
    Kappe CO and Dallinger D (2006). The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 5: 51–64 PubMedCrossRefGoogle Scholar
  96. 96.
    Shipe WD, Wolkenberg SE and Lindsley CW (2005). Accelerating lead development by microwave-enhanced medicinal chemistry. Drug Discov Today Technol 2: 155–161 CrossRefGoogle Scholar
  97. 97.
    Sarko CR (2005). Timesavings associated with microwave-assisted synthesis: a quantitative approach. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 222–236. Blackwell, Oxford CrossRefGoogle Scholar
  98. 98.
    Ersmark K, Larhed M and Wannberg J (2004). Microwave-enhanced medicinal chemistry: a high-speed opportunity for convenient preparation of protease inhibitors. Curr Opin Drug Discov Dev 7: 417–427 Google Scholar
  99. 99.
    Mavandadi F and Lidström P (2004). Microwave-assisted chemistry in drug discovery. Curr Top Med Chem 4: 773–792 PubMedCrossRefGoogle Scholar
  100. 100.
    Alexandre FR, Domon L and Frère S et al (2003). Microwaves in drug discovery and multi-step synthesis. Mol Divers 7: 273–280 PubMedCrossRefGoogle Scholar
  101. 101.
    Wathey B, Tierney J and Lidström P et al (2002). The impact of microwave-assisted organic chemistry on drug discovery. Drug Discov Today 7: 373–380 PubMedCrossRefGoogle Scholar
  102. 102.
    Dzierba CD and Combs AP (2002). Microwave-assisted chemistry as a tool for drug discovery. Annu Rep Med Chem 37: 247–256 CrossRefGoogle Scholar
  103. 103.
    Santagada V, Perissutti E and Caliendo G (2002). The application of microwave irradiation as new convenient synthetic procedure in drug discovery. Curr Med Chem 9: 1251–1283 PubMedGoogle Scholar
  104. 104.
    Wilson NS and Roth GP (2002). Recent trends in microwave-assisted synthesis. Curr Opin Drug Discov Dev 5: 620–629 Google Scholar
  105. 105.
    Collins MJ (2001). Microwave-assisted organic synthesis for drug discovery. Am Gen Proteom Technol 1: 40–43 Google Scholar
  106. 106.
    Larhed M and Hallberg A (2001). Microwave-assisted high-speed chemistry: a new technique in drug discovery. Drug Discov Today 6: 406–416 PubMedCrossRefGoogle Scholar
  107. 107.
    Matloobi M and Kappe CO (2007). Microwave synthesis in high-throughput environments. Chim Oggi 25: 26–31 Google Scholar
  108. 108.
    Stadler A and Kappe CO (2006). Microwave-assisted combinatorial and high-throughtput sysnthesis. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 726–787. Wiley-VCH, Weinheim Google Scholar
  109. 109.
    Martínez-Palou R (2006). Advances in microwave-assisted combinatorial chemistry without polymer-supported reagents. Mol Divers 10: 435–462 PubMedCrossRefGoogle Scholar
  110. 110.
    Lange T and Lindell S (2005). Recent advances in microwave-assisted combinatorial synthesis and library generation. Comb Chem High Throughput Screen 8: 595–606 PubMedCrossRefGoogle Scholar
  111. 111.
    Santagada V, Frecentese F and Perissutti E et al (2004). The application of microwaves in combinatorial and high-throughput synthesis as new synthetic procedure in drug discovery. QSAR Comb Sci 23: 919–944 CrossRefGoogle Scholar
  112. 112.
    Blackwell HE (2003). Out of the oil bath and into the oven—microwave-assisted combinatorial chemistry heats up. Org Biomol Chem 1: 1251–1255 PubMedCrossRefGoogle Scholar
  113. 113.
    Kappe CO and Stadler A (2002). Microwave-assisted combinatorial chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 405–433. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  114. 114.
    Lidström P, Westman J and Lewis A (2002). Enhancement of combinatorial chemistry by microwave-assisted organic synthesis. Comb Chem High Throughput Screen 5: 441–458 PubMedGoogle Scholar
  115. 115.
    Kappe CO (2002). High-speed combinatorial synthesis utilizing microwave irradiation. Curr Opin Chem Biol 6: 314–320 PubMedCrossRefGoogle Scholar
  116. 116.
    Lew A, Krutzik PO and Hart ME et al (2002). Increasing rates of reaction: microwave-assisted organic synthesis for combinatorial chemistry. J Comb Chem 4: 95–105 PubMedCrossRefGoogle Scholar
  117. 117.
    Alcázar J, Diels G and Schoentjes B (2007). Applications of the combination of microwave and parallel synthesis in medicinal chemistry. Comb Chem High Throughput Screen 10: 918–932 PubMedCrossRefGoogle Scholar
  118. 118.
    Kappe CO and Matloobi M (2007). Parallel processing of microwave-assisted organic transformations. Comb Chem High Throughput Screen 10: 735–750 PubMedCrossRefGoogle Scholar
  119. 119.
    Nüchter M, Ondruschka B and Tied A et al (2002). Microwave fields and parallel synthesis. Chem Aust 69: 28–29 Google Scholar
  120. 120.
    O’Neill JC and Blackwell HE (2007). Solid-phase and microwave-assisted syntheses of 2,5-diketopiperazines: small molecules with great potential. Comb Chem High Throughput Screen 10: 857–876 PubMedCrossRefGoogle Scholar
  121. 121.
    Dai WM and Shi J (2007). Diversity-oriented synthesis and solid-phase organic synthesis under controlled microwave heating. Comb Chem High Throughput Screen 10: 837–856 PubMedCrossRefGoogle Scholar
  122. 122.
    Erdélyi M (2006). Solid-phase methods for the microwave-assisted synthesis of heterocycles. Top Heterocycl Chem 1: 79–128 CrossRefGoogle Scholar
  123. 123.
    Stadler A and Kappe CO (2005). Microwave-assisted solid-phase synthesis. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 177–221. Blackwell, Oxford CrossRefGoogle Scholar
  124. 124.
    Al-Obeidi F, Austin RE and Okonya JF et al (2003). Microwave-assisted solid-phase synthesis (MASS): parallel and combinatorial chemical library synthesis. Mini Rev Med Chem 3: 449–460 PubMedCrossRefGoogle Scholar
  125. 125.
    Kappe CO (2001). Speeding up solid-phase chemistry by microwave irradiation: a tool for high throughput synthesis. Am Lab 33: 13–19 Google Scholar
  126. 126.
    Baxendale IR, Lee AL and Ley SV (2005). Integrating microwave-assisted synthesis and solid-supported reagents. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 133–176. Blackwell, Oxford CrossRefGoogle Scholar
  127. 127.
    Crosignani S and Linclau B (2006). Synthesis of heterocycles using polymer-supported reagents under microwave irradiation. Top Heterocycl Chem 1: 129–154 CrossRefGoogle Scholar
  128. 128.
    Kirschning A, Solodenko W and Mennecke K (2006). Combining enabling techniques in organic synthesis: continuous flow processes with heterogenized catalysts. Chem Eur J 12: 5972–5990 CrossRefGoogle Scholar
  129. 129.
    Bhattacharyya S (2005). Advances in organic synthesis using polymer-supported reagents and scavengers under microwave irradiation. Mol Divers 9: 253–257 PubMedCrossRefGoogle Scholar
  130. 130.
    Desai B and Kappe CO (2004). Microwave-assisted synthesis involving immobilized catalysts. Top Curr Chem 242: 177–208 Google Scholar
  131. 131.
    Swamy KMK, Yeh WB and Lin MJ et al (2003). Microwave-assisted polymer-supported combinatorial synthesis. Curr Med Chem 10: 2403–2423 PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang W (2007). Fluorous-enhanced multicomponent reactions for making drug-like library scaffolds. Comb Chem High Throughput Screen 10: 219–229 PubMedCrossRefGoogle Scholar
  133. 133.
    Zhang W (2006). Microwave-enhanced high-speed fluorous synthesis. Top Curr Chem 266: 145–166 PubMedCrossRefGoogle Scholar
  134. 134.
    Olofsson K and Larhed M (2004). Microwave-assisted fluorous chemistry. In: Gladysz, JA, Curran, DP and Horvath, IT (eds) Handbook of fluorous chemistry, pp 359–365. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  135. 135.
    Collins JM and Collins MJ (2006). Microwave-enhanced solid-phase peptide synthesis. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 898–930. Wiley-VCH, Weinheim Google Scholar
  136. 136.
    Grieco P (2004). The use of microwave irradiation in peptide chemistry. Chim Oggi 22: 18–20 Google Scholar
  137. 137.
    Collins JM and Leadbeater NE (2007). Microwave energy: a versatile tool for the biosciences. Org Biomol Chem 5: 1141–1150 PubMedCrossRefGoogle Scholar
  138. 138.
    Rejasse B, Lamare S and Legoy MD et al (2007). Influence of microwave irradiation on enzymatic properties: applications in enzyme chemistry. J Enzyme Inhib Med Chem 22: 518–526 PubMedCrossRefGoogle Scholar
  139. 139.
    Cioffi EA (2008). High-energy glycoconjugates: synthetic transformations of carbohydrates using microwave and ultrasonic energy. Curr Top Med Chem 8: 152–158 PubMedCrossRefGoogle Scholar
  140. 140.
    Corsaro A, Chiacchio U and Pistarà V et al (2006). Microwave-assisted chemistry of carbohydrates. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 579–14. Wiley-VCH, Weinheim Google Scholar
  141. 141.
    Das SK (2004) Application of microwave irradiation in the synthesis of carbohydrates. Synlett 915-32Google Scholar
  142. 142.
    Corsaro A, Chiacchio U and Pistarà V et al (2004). Microwave-assisted chemistry of carbohydrates. Curr Org Chem 8: 511–538 CrossRefGoogle Scholar
  143. 143.
    Appukkuttan P, Van der Eycken E (2008) Recent developments in microwave-assisted, transition-metal-catalysed C–C and C–N bond-forming reactions. Eur J Org Chem 1133-155Google Scholar
  144. 144.
    Singh BK, Kaval N and Tomar S et al (2008). Transition metal- catalyzed carbon–carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Org Process Res Dev 12: 468–474 CrossRefGoogle Scholar
  145. 145.
    Larhed M, Wannberg J and Hallberg A (2007). Controlled microwave heating as an enabling technology: expedient synthesis of protease inhibitors in perspective. QSAR Comb Sci 26: 51–68 CrossRefGoogle Scholar
  146. 146.
    Olofsson K, Nilsson P and Larhed M (2006). Microwave-assisted transition metal-catalyzed coupling reactions. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 685–725. Wiley-VCH, Weinheim Google Scholar
  147. 147.
    Wannberg J, Ersmark K and Larhed M (2006). Microwave-accelerated synthesis of protease inhibitors. Top Curr Chem 266: 167–198 CrossRefGoogle Scholar
  148. 148.
    Maes BUW (2006). Transition-metal-based carbon–carbon and carbon–heteroatom bond formation for the synthesis and decoration of heterocycles. Top Heterocycl Chem 1: 155–211 CrossRefGoogle Scholar
  149. 149.
    Nilsson P, Olofsson K and Larhed M (2006). Microwave-assisted and metal-catalyzed coupling reactions. Top Curr Chem 266: 103–144 CrossRefGoogle Scholar
  150. 150.
    Olofsson K and Larhed M (2005). Microwave-accelerated metal catalysis: organic transformations at warp speed. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 23–43. Blackwell, Oxford CrossRefGoogle Scholar
  151. 151.
    Lee J and Hlasta DJ (2004). Applications of microwaves. In: Beller, M and Bolm, C (eds) Transition metals for organic synthesis, 2nd edn. pp 597–608. Wiley-VCH, Weinheim Google Scholar
  152. 152.
    Olofsson K, Hallberg A and Larhed M (2002). Transition metal catalysis and microwave flash heating in organic chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 379–403. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  153. 153.
    Larhed M, Moberg C and Hallberg A (2002). Microwave-accelerated homogeneous catalysis in organic chemistry. Acc Chem Res 35: 717–727 PubMedCrossRefGoogle Scholar
  154. 154.
    Coquerel Y, Rodriguez J (2008) Microwave-assisted olefin metathesis. Eur J Org Chem 1125-132Google Scholar
  155. 155.
    Aitken SG and Abell AD (2005). Olefin metathesis: catalyst development, microwave catalysis and domino applications. Aust J Chem 58: 3–13 CrossRefGoogle Scholar
  156. 156.
    Bagley MC and Lubinu MC (2006). Microwave-assisted multicomponent reactions for the synthesis of heterocycles. Top Heterocycl Chem 1: 31–58 CrossRefGoogle Scholar
  157. 157.
    de Boer T, Amore A and Orru RVA (2006). Multicomponent reactions under microwave irradiation conditions. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 788–819. Wiley-VCH, Weinheim Google Scholar
  158. 158.
    Westman J (2005). Speed and efficiency in the production of diverse structures: microwave-assisted multi-component reactions. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 102–132. Blackwell, Oxford CrossRefGoogle Scholar
  159. 159.
    Polshettiwar V and Varma RS (2008). Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure Appl Chem 80: 777–790 CrossRefGoogle Scholar
  160. 160.
    de la Hoz A, Díaz-Ortiz A and Moreno A et al (2007). Microwave-assisted reactions in heterocyclic compounds with applications in medicinal and supramolecular chemistry. Comb Chem High Throughput Screen 10: 877–902 PubMedCrossRefGoogle Scholar
  161. 161.
    Besson T and Chosson E (2007). Microwave-assisted synthesis of bioactive quinazolines and quinazolinones. Comb Chem High Throughput Screen 10: 903–917 PubMedCrossRefGoogle Scholar
  162. 162.
    Bazureau JP, Hamelin J and Mongin F et al (2006). Microwaves in heterocylic chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 456–523. Wiley-VCH, Weinheim Google Scholar
  163. 163.
    Suna E and Mutule I (2006). Microwave-assisted heterocyclic chemistry. Top Curr Chem 266: 49–101 CrossRefGoogle Scholar
  164. 164.
    Pemberton N, Chorell E and Almqvist F (2006). Microwave-assisted synthesis and functionalization of 2-pyridones, 2-quinolones and other ring-fused 2-pyridones. Top Heterocycl Chem 1: 1–30 CrossRefGoogle Scholar
  165. 165.
    Besson T and Thiéry V (2006). Microwave-assisted synthesis of sulfur and nitrogen-containing heterocycles. Top Heterocycl Chem 1: 59–78 CrossRefGoogle Scholar
  166. 166.
    Rodriguez M and Taddei M (2006). Synthesis of heterocycles via microwave-assisted cycloadditions and cyclocondensations. Top Heterocycl Chem 1: 213–266 CrossRefGoogle Scholar
  167. 167.
    Kaval N, Appukkuttan P and Van der Eycken E (2006). The chemistry of 2-(1H)-pyrazinones in solution and on solid support. Top Heterocycl Chem 1: 267–304 CrossRefGoogle Scholar
  168. 168.
    Shipe WD, Yang F and Zhao Z et al (2006). Convenient and general microwave-assisted protocols for the expedient synthesis of heterocycles. Heterocycles 70: 655–689 CrossRefGoogle Scholar
  169. 169.
    Rakhmankulov DL, Shavshukova SY and Latypova FN (2005). Synthesis and transformations of heterocyclic compounds under the influence of microwave radiation. Chem Heterocycl Comp 41: 951–961 CrossRefGoogle Scholar
  170. 170.
    Besson T and Brain CT (2005). Heterocyclic chemistry using microwave-assisted approaches. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 44–74. Blackwell, Oxford CrossRefGoogle Scholar
  171. 171.
    Molteni V and Ellis DA (2005). Recent advances in microwave-assisted synthesis of heterocyclic compounds. Curr Org Synth 2: 333–375 CrossRefGoogle Scholar
  172. 172.
    Xu Y and Guo QX (2004). Syntheses of heterocyclic compounds under microwave irradiation. Heterocycles 63: 903–974 CrossRefGoogle Scholar
  173. 173.
    Katritzky AR, Singh SK (2003) Microwave-assisted heterocyclic synthesis. ARKIVOC xiii:68-6Google Scholar
  174. 174.
    Hamelin J, Bazureau JP and Texier-Boullet F (2002). Microwaves in heterocyclic chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 253–293. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  175. 175.
    Bougrin K, Soufiaoui M and Bashiardes G (2006). Microwaves in cycloadditions. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 524–578. Wiley-VCH, Weinheim Google Scholar
  176. 176.
    de la Hoz A, Díaz-Ortiz A and Langa F (2002). Microwaves in cycloadditions. In: Loupy, A (eds) Microwaves in organic synthesis, pp 295–343. Wiley-VCH, Weinheim Google Scholar
  177. 177.
    de la Hoz A, Díaz-Ortiz A, Moreno A et al (2000) Cycloadditions under microwave irradiation conditions: methods and applications. Eur J Org Chem 3659-673Google Scholar
  178. 178.
    Liu JF (2007). Rapid syntheses of biologically active quinazolinone natural products using microwave technology. Curr Org Synth 4: 223–237 CrossRefGoogle Scholar
  179. 179.
    Appukkuttan P and Van der Eycken E (2006). Microwave-assisted natural product chemistry. Top Curr Chem 266: 1–47 CrossRefGoogle Scholar
  180. 180.
    Klán P and Církva V (2006). Microwaves in photochemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 860–897. Wiley-VCH, Weinheim Google Scholar
  181. 181.
    Klán P and Církva V (2002). Microwave in photochemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 463–486. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  182. 182.
    Stone-Elander S, Elander N and Thorell JO et al (2007). Microwaving in F-18 chemistry: quirks and tweaks. Ernst Schering Res Found Workshop 64: 243–269 CrossRefGoogle Scholar
  183. 183.
    Jones JR and Lu SY (2006). Microwave-enhanced radiochemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 820–859. Wiley-VCH, Weinheim Google Scholar
  184. 184.
    Jones JR and Lu SY (2002). Microwave-enhanced radiochemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 435–462. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  185. 185.
    Stone-Elander S and Elander N (2002). Microwave applications in radiolabelling with short-lived positron-emitting radionuclides. J Label Comp Radiopharm 45: 715–746 CrossRefGoogle Scholar
  186. 186.
    Elander N, Jones JR, Lu SY et al (2000) Microwave-enhanced radiochemistry. Chem Soc Rev: 239-50Google Scholar
  187. 187.
    Cravotto G and Cintas P (2007). The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis. Chem Eur J 13: 1902–1909 CrossRefGoogle Scholar
  188. 188.
    Langa F and de la Cruz P (2007). Microwave irradiation. An important tool to functionalize fullerenes and carbon nanotubes. Comb Chem High Throughput Screen 10: 766–782 PubMedCrossRefGoogle Scholar
  189. 189.
    Langa F and de la Cruz P (2006). Application of microwave irradiation in fullerene and carbon nanotube chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 931–958. Wiley-VCH, Weinheim Google Scholar
  190. 190.
    Vanetsev AS and Tretyakov YD (2007). Microwave-assisted synthesis of individual and multicomponent oxides. Russ Chem Rev 76: 397–413 CrossRefGoogle Scholar
  191. 191.
    Millos CJ, Whittaker AG and Brechin EK (2007). Microwave heating—a new synthetic tool for cluster synthesis. Polyhedron 26: 1927–1933 CrossRefGoogle Scholar
  192. 192.
    Hájek M (2006). Microwave catalysis in organic synthesis. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 615–652. Wiley-VCH, Weinheim Google Scholar
  193. 193.
    Hájek M (2002). Microwave catalysis in organic synthesis. In: Loupy, A (eds) Microwaves in organic synthesis, pp 345–378. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  194. 194.
    Gellis A, Rathelot P, Crozet MP et al (2002) Utility of microwaves as new methodology for electron transfer reactions. In: Vanelle P (ed) Electron transfer reactions in organic synthesis, research signpost, Trivandrum, pp 113-30Google Scholar
  195. 195.
    Mavandadi F (2008). Microwave technology in process optimization. In: Gadamasetti, K (eds) Process chemistry in the pharmaceutical industry, pp 403–426. CRC, Danvers Google Scholar
  196. 196.
    Kremsner JM, Stadler A and Kappe CO (2006). The scale-up of microwave-assisted organic synthesis. Top Curr Chem 266: 233–278 CrossRefGoogle Scholar
  197. 197.
    Lehmann H (2006) Scale-up in microwave-accelerated organic synthesis. In: Seeberger PH, Blume T (eds) Ernst Schering foundation symposium proceedings. Springer, Berlin, pp 133-49Google Scholar
  198. 198.
    Roberts BA and Strauss CR (2005). Scale-up of microwave-assisted organic synthesis. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 237–271. Blackwell, Oxford CrossRefGoogle Scholar
  199. 199.
    Wolkenberg SE, Shipe WD and Lindsley CW et al (2005). Applications of microwave-assisted organic synthesis on the multigram scale. Curr Opin Drug Discov Dev 8: 701–708 Google Scholar
  200. 200.
    Baxendale IR, Hayward JJ and Ley SV (2007). Microwave reactions under continuous flow conditions. Comb Chem High Throughput Screen 10: 802–836 PubMedCrossRefGoogle Scholar
  201. 201.
    Glasnov TN and Kappe CO (2007). Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Commun 28: 395–410 CrossRefGoogle Scholar
  202. 202.
    Schwalbe T and Simons K (2006). Faster selective chemistry by microflow and continuous microwave synthesis. Chim Oggi 24: 56–61 Google Scholar
  203. 203.
    Baxendale IR and Pitts MR (2006). Microwave flow chemistry: the next evolutionary step in synthetic chemistry?. Chim Oggi 24: 41–45 Google Scholar
  204. 204.
    Razzaq T, Kremsner JM and Kappe CO (2008). Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators. J Org Chem 73: 6321–6329 PubMedCrossRefGoogle Scholar
  205. 205.
    Herrero MA, Kremsner JM and Kappe CO (2008). Nonthermal microwave effects revisited—on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73: 36–47 PubMedCrossRefGoogle Scholar
  206. 206.
    Kremsner JM, Kappe CO (2005) Microwave-assisted organic synthesis in near-critical water at 300 °C. A proof-of-concept study. Eur J Org Chem: 3672-679Google Scholar
  207. 207.
    Kremsner JM and Kappe CO (2006). Silicon carbide passive heating elements in microwave-assisted organic synthesis. J Org Chem 71: 4651–4658 PubMedCrossRefGoogle Scholar
  208. 208.
    Bacsa B, Horváti K and Bősze S et al (2008). Solid-phase synthesis of difficult peptide sequences at elevated temperatures—a critical comparison of microwave and conventional heating technologies. J Org Chem 73: 7532–7542 PubMedCrossRefGoogle Scholar
  209. 209.
    Hosseini M, Stiasni N, Barbieri V and Kappe CO (2007). Microwave-assisted asymmetric organocatalysis. A probe for non-thermal microwave effects and the concept of simultaneous cooling. J Org Chem 72: 1417–1424 PubMedCrossRefGoogle Scholar
  210. 210.
    Razzaq T and Kappe CO (2008). On the energy efficiency of microwave-assisted organic reactions. ChemSusChem 1: 123–132 PubMedCrossRefGoogle Scholar
  211. 211.
    Katritzky AR, Cai C and Collins MD et al (2006). Incorporation of microwave synthesis into the undergraduate organic laboratory. J Chem Educ 83: 634–636 CrossRefGoogle Scholar
  212. 212.
    Murphree SS and Kappe CO (2009). Microwave-assisted carbonyl chemistry for the undergraduate laboratory. J Chem Educ 86: 227–229 CrossRefGoogle Scholar
  213. 213.
    Biotage Pathfinder Database (http://www.biotagepathfinder.com)
  214. 214.
    Microwave-Assisted Organic Synthesis Database (http://www.mwchemdb.com)
  215. 215.
    Microwave Chemistry Literature Highlights (http://www.organic-chemistry.org/Highlights/microwave.shtm)
  216. 216.
    Websites on microwave synthesis. http://www.maos.net; http://microwavesynthesis.net
  217. 217.
    Moseley JD, Lenden P, Thomson AD and Gilday JP (2007). The importance of agitation and fill volume in small scale scientific microwave reactors. Tetrahedron Lett 48: 6084–6087 CrossRefGoogle Scholar
  218. 218.
    Kormos CM and Leadbeater NE (2008). Preparation of nonsymmetrically substituted stilbenes in a one-pot two-step Heck strategy using ethene as a reagent. J Org Chem 73: 3854–3858 PubMedCrossRefGoogle Scholar
  219. 219.
    Lachance N, April M, Joly MA (2005) Rapid and efficient microwave-assisted synthesis of 4-, 5-, 6- and 7-azaindoles. Synthesis: 2571-577Google Scholar
  220. 220.
    Vasudevan A, Tseng PS and Djuric SW (2006). A post aza Baylis-Hillman/Heck coupling approach towards the synthesis of constrained scaffolds. Tetrahedron Lett 47: 8591–8593 CrossRefGoogle Scholar
  221. 221.
    Kesavan S, Panek JS and Porco JA (2007). Preparation of alkylidene indane and related scaffolds and their further elaboration to novel chemotypes. Org Lett 9: 5203–5206 PubMedCrossRefGoogle Scholar
  222. 222.
    Donets PA and Van der Eycken E (2007). Efficient synthesis of the 3-benzazepine framework via intramolecular Heck reductive cyclization. Org Lett 9: 3017–3020 PubMedCrossRefGoogle Scholar
  223. 223.
    Fields WH, Khan AK and Sabat M et al (2008). One-pot tandem decarboxylative allylation-Heck cyclization of allyl diphenylglycinate imines: rapid access to polyfunctionalized 1-aminoindanes. Org Lett 10: 5131–5134 PubMedCrossRefGoogle Scholar
  224. 224.
    Svennebring A, Nilsson P and Larhed M (2007). Microwave-accelerated spiro-cyclizations of o-halobenzyl cyclohexenyl ethers by palladium(0) catalysis. J Org Chem 72: 5851–5854 PubMedCrossRefGoogle Scholar
  225. 225.
    Datta GK, Hallberg A and von Schenck H et al (2006). Selective terminal Heck arylation of vinyl ethers with aryl chlorides: a combined experimental-computational approach including synthesis of betaxolol. J Org Chem 71: 3896–3903 PubMedCrossRefGoogle Scholar
  226. 226.
    Datta GK, Nordeman P and Dackenberg J et al (2008). Enantiopure 2-aryl-2-methyl cyclopentanones by an asymmetric chelation-controlled Heck reaction using aryl bromides: increased preparative scope and effect of ring size on reactivity and selectivity. Tetrahedron Asymmetry 19: 1120–1126 CrossRefGoogle Scholar
  227. 227.
    Arvela RK, Pasquini S and Larhed M (2007). Highly regioselective internal Heck arylation of hydroxyalkyl vinyl ethers by aryl halides in water. J Org Chem 72: 6390–6396 PubMedCrossRefGoogle Scholar
  228. 228.
    Dounay AB, Humphreys PG, Overman LE and Wrobleski AD (2008). Total synthesis of the strychnos alkaloid (+)-minfiensine: tandem enantioselective intramolecular Heck-iminium ion cyclization. J Am Chem Soc 130: 5368–5377 PubMedCrossRefGoogle Scholar
  229. 229.
    Yang J, Wu H and Shen L et al (2007). Total synthesis of (±)-communesin F. J Am Chem Soc 129: 13794–13795 PubMedCrossRefGoogle Scholar
  230. 230.
    Mata Y, Pàmies O and Diéguez M (2007). Screening of a modular sugar-based phosphite-oxazoline ligand library in asymmetric Pd-catalyzed Heck reactions. Chem Eur J 13: 3296–3304 CrossRefGoogle Scholar
  231. 231.
    Kaukoranta P, Källström K and Andersson PG (2007). Microwave-assisted asymmetric intermolecular Heck reaction using phosphine-thiazole ligands. Adv Synth Catal 349: 2595–2602 CrossRefGoogle Scholar
  232. 232.
    Andappan MMS, Nilsson P and von Schenck H et al (2004). Dioxygen-promoted regioselective oxidative Heck arylations of electron-rich olefins with arylboronic acids. J Org Chem 69: 5212–5218 PubMedCrossRefGoogle Scholar
  233. 233.
    Arvela RK and Leadbeater NE (2005). Microwave-promoted Heck coupling using ultralow metal catalyst concentrations. J Org Chem 70: 1786–1790 PubMedCrossRefGoogle Scholar
  234. 234.
    Püschl A, Rudbeck HC, Faldt A et al (2005) Versatile synthesis of 3-arylindan-1-ones by palladium-catalyzed intramolecular reductive cyclization of bromochalcones. Synthesis: 291-95Google Scholar
  235. 235.
    Cheung WS, Patch RJ and Player MR (2005). A tandem Heck-carbocyclization/Suzuki-coupling approach to the stereoselective syntheses of asymmetric 3,3-(diarylmethylene)indolinones. J Org Chem 70: 3741–3744 PubMedCrossRefGoogle Scholar
  236. 236.
    Franck P, Hostyn S and Dajka-Halász B et al (2008). Pd-catalyzed intramolecular direct arylations at high temperature. Tetrahedron 64: 6030–6037 CrossRefGoogle Scholar
  237. 237.
    Lacrouts P, Parsons P, Penkett C et al (2005) A palladium-assisted ring annulation for the synthesis of the batrachotoxin ring system. Synlett: 2767-768Google Scholar
  238. 238.
    Declerck V, Martinez J, Lamaty F (2006) Microwave-assisted copper-catalyzed Heck reaction in PEG solvent. Synlett: 3029-032Google Scholar
  239. 239.
    Leadbeater NE and Smith RJ (2006). Real-time monitoring of microwave-promoted Suzuki coupling reactions using in situ Raman spectroscopy. Org Lett 8: 4589–4591 PubMedCrossRefGoogle Scholar
  240. 240.
    Leadbeater NE, Williams VA and Barnard TM et al (2006). Open-vessel microwave-promoted Suzuki reactions using low levels of palladium catalyst: optimization and scale-up. Org Process Res Dev 10: 833–837 CrossRefGoogle Scholar
  241. 241.
    Baxendale IR, Griffiths-Jones CM, Ley SV and Tranmer GK (2006). Microwave-assisted Suzuki coupling reactions with an encapsulated palladium catalyst for batch and continuous-flow transformations. Chem Eur J 12: 4407–4416 CrossRefGoogle Scholar
  242. 242.
    Sharma AK, Gowdahalli K and Krzeminski J et al (2007). Microwave-assisted Suzuki cross-coupling reaction, a key step in the synthesis of polycyclic aromatic hydrocarbons and their metabolites. J Org Chem 72: 8987–8989 PubMedCrossRefGoogle Scholar
  243. 243.
    Antonow D, Cooper N and Howard PW et al (2007). Parallel synthesis of a novel C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine (PBD) library. J Comb Chem 9: 437–445 PubMedCrossRefGoogle Scholar
  244. 244.
    Vickerstaffe E, Villard AL, Ladlow M et al (2007) Chromatography-free Suzuki reactions using a polymer-assisted solution-phase (PASP) approach. Synlett 1251-254Google Scholar
  245. 245.
    Freundlich JS and Landis HE (2006). An expeditious aqueous Suzuki–Miyaura method for the arylation of bromophenols. Tetrahedron Lett 47: 4275–4279 CrossRefGoogle Scholar
  246. 246.
    Navarro O, Kaur H, Mahjoor P and Nolan SP (2004). Cross-coupling and dehalogenation reactions catalyzed by (N-heterocyclic carbene)Pd(allyl)Cl complexes. J Org Chem 69: 3173–3180 PubMedCrossRefGoogle Scholar
  247. 247.
    Clarke ML, France MB and Fuentes JA et al (2007). A convenient catalyst system for microwave accelerated cross-coupling of a range of aryl boronic acids with aryl chlorides. Beilstein J Org Chem 3: 18–21 PubMedCrossRefGoogle Scholar
  248. 248.
    Poondra RP, Fischer PM and Turner NJ (2004). Efficient palladium-catalyzed cross-coupling of β-chloroalkylidene/arylidene malonates using microwave chemistry. J Org Chem 69: 6920–6922 PubMedCrossRefGoogle Scholar
  249. 249.
    Flegeau EF, Popkin ME and Greaney MF (2006). Suzuki coupling of oxazoles. Org Lett 8: 2495–2498 CrossRefGoogle Scholar
  250. 250.
    Stanetty P, Schnürch M and Mihovilovic MD (2006). Halogenated 2′ chlorobithiazoles via Pd-catalyzed cross-coupling reactions. J Org Chem 71: 3754–3761 PubMedCrossRefGoogle Scholar
  251. 251.
    Savall BM and Fontimayor JR (2008). Synthesis of 2-arylbenzimidazoles via microwave Suzuki–Miyaura reaction of unprotected 2-chlorobenzimidazoles. Tetrahedron Lett 49: 6667–6669 CrossRefGoogle Scholar
  252. 252.
    DiMauro EF and Vitullo JR (2006). Microwave-assisted preparation of fused bicyclic heteroaryl boronates: application in one-pot Suzuki couplings. J Org Chem 71: 3959–3962 PubMedCrossRefGoogle Scholar
  253. 253.
    Fitzmaurice RJ, Etheridge ZC, Jumel E et al (2006) Microwave enhanced palladium catalysed coupling reactions: a diversity- oriented synthesis approach to functionalised flavones. Chem Commun 4814-816Google Scholar
  254. 254.
    Högermeier J and Reißig HU (2007). First comprehensive investigation of Suzuki couplings of alkenyl nonaflates with aryl and alkenyl boronic acid derivatives by using classical conditions and microwave heating. Chem Eur J 13: 2410–2420 CrossRefGoogle Scholar
  255. 255.
    Bazin MA, Kihel LE and Lancelot JC et al (2007). Original one-pot microwave-promoted Hunsdiecker–Suzuki strategy: straightforward access to trans-1,2-diarylethenes from cinnamic acids. Tetrahedron Lett 48: 4347–4351 CrossRefGoogle Scholar
  256. 256.
    Melucci M, Barbarella G and Zambianchi M et al (2004). Solution-phase microwave-assisted synthesis of unsubstituted and modified α-quinque- and sexithiophenes. J Org Chem 69: 4821–4828 PubMedCrossRefGoogle Scholar
  257. 257.
    Alesi S, Di Maria F and Melucci M et al (2008). Microwave-assisted synthesis of oligothiophene semiconductors in aqueous media using silica and chitosan supported Pd catalysts. Green Chem 10: 517–523 CrossRefGoogle Scholar
  258. 258.
    De Borggraeve W, Appukkuttan P, Azzam R et al (2005) Synthesis of novel functionalised symmetric bi-2(1H)-pyrazinones. Synlett: 777-80Google Scholar
  259. 259.
    Weber J and Thomas A (2008). Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J Am Chem Soc 130: 6334–6335 PubMedCrossRefGoogle Scholar
  260. 260.
    Kang YK, Deria P and Carroll PJ et al (2008). Synthesis of water-soluble poly(p-phenyleneethynylene) in neat water under aerobic conditions via Suzuki–Miyaura polycondensation using a diborylethyne synthon. Org Lett 10: 1341–1344 PubMedCrossRefGoogle Scholar
  261. 261.
    Perissutti E, Frecentese F and Lavecchia A et al (2007). Design and synthesis of potential β-sheet nucleators via Suzuki coupling reaction. Tetrahedron 63: 12779–12785 CrossRefGoogle Scholar
  262. 262.
    Genov M, Almorín A and Espinet P (2007). Microwave assisted asymmetric Suzuki–Miyaura and Negishi cross-coupling reactions: synthesis of chiral binaphthalenes. Tetrahedron Asymmetry 18: 625–627 CrossRefGoogle Scholar
  263. 263.
    Kim JK, Kim YH and Nam HT et al (2008). Total synthesis of aristolactams via a one-pot Suzuki–Miyaura coupling/aldol condensation cascade reaction. Org Lett 10: 3543–3546 PubMedCrossRefGoogle Scholar
  264. 264.
    Kim YH, Lee H and Kim YJ et al (2008). Direct one-pot synthesis of phenanthrenes via Suzuki–Miyaura coupling/aldol condensation cascade reaction. J Org Chem 73: 495–501 PubMedCrossRefGoogle Scholar
  265. 265.
    Li H-Y, Wang Y and McMillen WT et al (2007). A concise synthesis of quinazolinone TGF-β RI inhibitor through one-pot three- component Suzuki–Miyaura/etherification and imidate–amide rearrangement reactions. Tetrahedron 63: 11763–11770 CrossRefGoogle Scholar
  266. 266.
    VanAlstine MA, Wentland MP and Cohen DJ et al (2007). Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. 5. Opioid receptor binding properties of N-((4′-phenyl)-phenethyl) analogues of 8-CAC. Bioorg Med Chem Lett 17: 6516–6520 PubMedCrossRefGoogle Scholar
  267. 267.
    Wilson DP, Wan ZK and Xu WX et al (2007). Structure-based optimization of protein tyrosine phosphatase 1B inhibitors: from the active site to the second phosphotyrosine binding site. J Med Chem 50: 4681–4698 PubMedCrossRefGoogle Scholar
  268. 268.
    Duncton MAJ, Estiarte MA and Tan D et al (2008). Preparation of aryloxetanes and arylazetidines by use of an alkyl–aryl Suzuki coupling. Org Lett 10: 3259–3262 PubMedCrossRefGoogle Scholar
  269. 269.
    Tamayo N, Liao H and Stec MM et al (2008). Design and synthesis of peripherally restricted transient receptor potential vanilloid 1 (TRPV1) antagonists. J Med Chem 51: 2744–2757 PubMedCrossRefGoogle Scholar
  270. 270.
    Benakki H, Colacino E and André C et al (2008). Microwave-assisted multi-step synthesis of novel pyrrolo-[3,2-c]quinoline derivatives. Tetrahedron 64: 5949–5955 CrossRefGoogle Scholar
  271. 271.
    Lépine R and Zhu J (2005). Microwave-assisted intramolecular Suzuki–Miyaura reaction to macrocycle, a concise asymmetric total synthesis of biphenomycin B. Org Lett 7: 2981–2984 PubMedCrossRefGoogle Scholar
  272. 272.
    Arvela RK, Leadbeater NE, Mack TL and Kormos CM (2006). Microwave-promoted Suzuki coupling reactions with organotrifluoroborates in water using ultra-low catalyst loadings. Tetrahedron Lett 47: 217–220 CrossRefGoogle Scholar
  273. 273.
    Kabalka GW and Al-Masum M (2005). Microwave enhanced cross-coupling reactions involving potassium organotrifluoroborates. Tetrahedron Lett 46: 6329–6331 CrossRefGoogle Scholar
  274. 274.
    Alacid E and Nájera C (2008). First cross-coupling reaction of potassium aryltrifluoroborates with organic chlorides in aqueous media catalyzed by an oxime-derived palladacycle. Org Lett 10: 5011–5014 PubMedCrossRefGoogle Scholar
  275. 275.
    Yan J, Zhu M, Zhou Z (2006) Rapid microwave-promoted catalyst- and base-free Suzuki-type coupling reaction in water. Eur J Org Chem: 2060-062Google Scholar
  276. 276.
    Poláčková V, Toma S and Augustínová I (2006). Microwave-promoted cross-coupling of acid chlorides with arylboronic acids: a convenient method for preparing aromatic ketones. Tetrahedron 62: 11675–11678 CrossRefGoogle Scholar
  277. 277.
    Ekoue-Kovi K, Xu H and Wolf C (2008). Palladium-phosphinous acid-catalyzed cross-coupling of aliphatic and aromatic acyl chlorides with boronic acids. Tetrahedron Lett 49: 5773–5776 CrossRefGoogle Scholar
  278. 278.
    Wang HJ, Keilman J and Pabba C et al (2005). Microwave-assisted cross-coupling of 3-chloro-2-pyrazolines and 3-chloro-1-phenyl-1,4,5,6-tetrahydropyridazine with aryl boronic acids. Tetrahedron Lett 46: 2631–2634 CrossRefGoogle Scholar
  279. 279.
    Ito F, Iwasaki M and Watanabe T et al (2005). The first total synthesis of kwakhurin, a characteristic component of a rejuvenating plant, “kwao keur” toward an efficient synthetic route to phytoestrogenic isoflavones. Org Biomol Chem 3: 674–681 PubMedCrossRefGoogle Scholar
  280. 280.
    Nehls BS, Galbrecht F and Bilge A et al (2005). Synthesis and spectroscopy of an oligophenyl based cruciform with remarkable π-π assisted folding. Org Biomol Chem 3: 3213–3219 PubMedCrossRefGoogle Scholar
  281. 281.
    Huang H, Liu H, Jiang H and Chen K (2008). Rapid and efficient Pd-catalyzed Sonogashira coupling of aryl chlorides. J Org Chem 73: 6037–6040 PubMedCrossRefGoogle Scholar
  282. 282.
    Zheng SL, Reid S and Lin N et al (2006). Microwave-assisted synthesis of ethynylarylboronates for the construction of boronic acid-based fluorescent sensors for carbohydrates. Tetrahedron Lett 47: 2331–2335 CrossRefGoogle Scholar
  283. 283.
    Sørensen US and Pombo-Villar E (2005). Copper-free palladium- catalyzed Sonogashira-type coupling of aryl halides and 1-aryl-2-(trimethylsilyl)acetylenes. Tetrahedron 61: 2697–2703 CrossRefGoogle Scholar
  284. 284.
    Kwan PH, MacLachlan MJ and Swager TM (2004). Rotaxanated conjugated sensory polymers. J Am Chem Soc 126: 8638–8639 PubMedCrossRefGoogle Scholar
  285. 285.
    Sanz R, Guilarte V, Castroviejo MP (2008) Simple indole synthesis by one-pot Sonogashira coupling-NaOH-mediated cyclization. Synlett: 3006-010Google Scholar
  286. 286.
    Hopkins CR and Collar N (2004). An improved method for the synthesis of 6-substituted-5H-pyrrolo[2,3-b]pyrazines via palladium-catalyzed heteroannulation using microwave heating. Tetrahedron Lett 45: 8631–8633 CrossRefGoogle Scholar
  287. 287.
    O’Mahony G, Ehrman E and Grøtli M (2008). Synthesis and photophysical properties of novel cyclonucleosides—substituent effects on fluorescence emission. Tetrahedron 64: 7151–7158 CrossRefGoogle Scholar
  288. 288.
    Schramm OG and Müller TJJ (2006). Microwave-accelerated coupling-isomerization reaction (MACIR)—a general coupling-isomerization synthesis of 1,3-diarylprop-2-en-1-ones. Adv Synth Catal 348: 2565–2570 CrossRefGoogle Scholar
  289. 289.
    Liao WW, Müller TJJ (2006) Sequential coupling-isomerization-coupling reactions—a novel three-component synthesis of aryl chalcones. Synlett: 3469-473Google Scholar
  290. 290.
    Schramm OG, Müller TJJ (2006) Microwave-accelerated coupling-isomerization-enamine addition-aldol condensation sequences to 1-acetyl-2-amino-cyclohexa-1,3-dienes. Synlett: 1841-846Google Scholar
  291. 291.
    Willy B, Rominger F, Müller TJJ (2008) Novel microwave-assisted one-pot synthesis of isoxazoles by a three-component coupling-cycloaddition sequence. Synthesis: 293-03Google Scholar
  292. 292.
    Willy B, Müller TJJ (2008) Regioselective three-component synthesis of highly fluorescent 1,3,5-trisubstituted pyrazoles. Eur J Org Chem: 4157-168Google Scholar
  293. 293.
    Willy B, Dallos T, Rominger F et al (2008) Three-component synthesis of cryofluorescent 2,4-disubstituted 3H-1,5-benzodiazepines—conformational control of emission properties. Eur J Org Chem: 4796-805Google Scholar
  294. 294.
    Mehta VP, Sharma A and Van der Eycken E (2008). The first palladium-catalyzed desulfitative Sonogashira-type cross-coupling of (hetero)aryl thioethers with terminal alkynes. Org Lett 10: 1147–1150 PubMedCrossRefGoogle Scholar
  295. 295.
    Singh BK, Mehta VP and Parmar VS et al (2007). Palladium-catalyzed copper(I)-mediated cross-coupling of arylboronic acids and 2(1H)-pyrazinones facilitated by microwave irradiation with simultaneous cooling. Org Biomol Chem 5: 2962–2965 PubMedCrossRefGoogle Scholar
  296. 296.
    Singh BJ, Parmar VS, Van der Eycken E (2008) Rapid palladium-catalyzed C3-arylation of 2(1H)-pyrazinones: effect of simultaneous cooling on microwave-assisted reactions on solid support. Synlett: 3021-025Google Scholar
  297. 297.
    Ermolat’ev D, Mehta VP, Van der Eycken E (2007) Ag +-mediated synthesis of substituted furo[2,3-b]pyrazines. Synlett: 3117-122Google Scholar
  298. 298.
    Mehta VP, Sharma A and Van Hecke K et al (2008). A novel and versatile entry to asymmetrically substituted pyrazines. J Org Chem 73: 2382–2388 PubMedCrossRefGoogle Scholar
  299. 299.
    Silva S, Sylla B and Suzenet F et al (2008). Oxazolinethiones and oxazolidinethiones for the first copper-catalyzed desulfurative cross-coupling reaction and first Sonogashira applications. Org Lett 10: 853–856 PubMedCrossRefGoogle Scholar
  300. 300.
    Collings JC, Parsons AC, Porres L et al (2006) Optical properties of donor-acceptor phenylene-ethynylene systems containing the 6-methylpyran-2-one group as an acceptor. Chem Commun 2666-668Google Scholar
  301. 301.
    Stuhr-Hansen N, Sørensen JK and Moth-Poulsen K et al (2005). Synthetic protocols and building blocks for molecular electronics. Tetrahedron 61: 12288–12295 CrossRefGoogle Scholar
  302. 302.
    Togninelli A, Gevariya H and Alongi M et al (2007). An improved general method for palladium catalyzed alkenylations and alkynylations of aryl halides under microwave conditions. Tetrahedron Lett 48: 4801–4803 CrossRefGoogle Scholar
  303. 303.
    de Souza R, Bittar M, Mendes L et al (2008) Copper-free Sonogashira reaction using gold nanoparticles supported on Ce 2 O 3, Nb 2 O 5 and SiO 2 under microwave irradiation. Synlett: 1777-780Google Scholar
  304. 304.
    Nehls BS, Asawapirom U and Füldner S et al (2004). Semiconducting polymers via microwave-assisted Suzuki and Stille cross-coupling reactions. Adv Funct Mater 14: 352–356 CrossRefGoogle Scholar
  305. 305.
    Usta H, Facchetti A and Marks TJ (2008). Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. J Am Chem Soc 130: 8580–8581 PubMedCrossRefGoogle Scholar
  306. 306.
    Appukkuttan P, Husain M, Gupta R et al (2006) A chemoselective microwave-assisted one-pot cross-Stille reaction of benzylic halides with 2(1H)-pyrazinones using simultaneous cooling. Synlett: 1491-496Google Scholar
  307. 307.
    Jeon SL, Kim JK and Son JB et al (2007). One pot synthesis of novel α, β-dichloro-β-trifluoromethylated enones and their application to the synthesis of trifluoromethylated heterocycles. J Fluor Chem 128: 153–157 CrossRefGoogle Scholar
  308. 308.
    Hodgson DM, Chung YK and Nuzzo I et al (2007). Intramolecular cyclopropanation of unsaturated terminal epoxides and chlorohydrins. J Am Chem Soc 129: 4456–4462 PubMedCrossRefGoogle Scholar
  309. 309.
    Krascsenicsová K, Walla P, Kasák P et al (2004) Stereoconservative Negishi arylation and alkynylation as an efficient approach to enantiopure 2,2′ diarylated 1,1′ binaphthyls. Chem Commun: 2606-607Google Scholar
  310. 310.
    Dankwardt JW (2005). Transition metal catalyzed cross-coupling of aryl Grignard reagents with aryl fluorides via Pd- or Ni-activation of the C-F bond: an efficient synthesis of unsymmetrical biaryls—application of microwave technology in ligand and catalyst screening. J Organomet Chem 690: 932–938 CrossRefGoogle Scholar
  311. 311.
    Seganish MW and DeShong P (2004). Palladium-catalyzed cross-coupling of aryl triethylammonium bis(catechol) silicates with aryl bromides using microwave irradiation. Org Lett 6: 4379–4381 PubMedCrossRefGoogle Scholar
  312. 312.
    Clark ML (2005). First microwave-accelerated Hiyama coupling of aryl- and vinylsiloxane derivatives: clean cross-coupling of aryl chlorides within minutes. Adv Synth Catal 347: 303–307 CrossRefGoogle Scholar
  313. 313.
    Alacid E and Nájera C (2006). Solvent-less and fluoride-free Hiyama reaction of arylsiloxanes with aryl bromides and chlorides promoted by sodium hydroxide: a useful protocol for palladium recycling and product isolation. Adv Synth Catal 348: 945–952 CrossRefGoogle Scholar
  314. 314.
    Alacid E and Nájera C (2006). The first fluoride-free Hiyama reaction of vinylsiloxanes promoted by sodium hydroxide in water. Adv Synth Catal 348: 2085–2091 CrossRefGoogle Scholar
  315. 315.
    Alacid E and Nájera C (2008). Aqueous sodium hydroxide promoted cross-coupling reactions of alkenyltrialkoxysilanes under ligand-free conditions. J Org Chem 73: 2315–2322 PubMedCrossRefGoogle Scholar
  316. 316.
    Wu X, Ekegren JK and Larhed M (2006). Microwave-promoted aminocarbonylation of aryl iodides, aryl bromides, and aryl chlorides in water. Organometallics 25: 1434–1439 CrossRefGoogle Scholar
  317. 317.
    Appukkuttan P, Axelsson L and Van der Eycken E et al (2008). Microwave-assisted, Mo(CO)6-mediated, palladium-catalyzed amino-carbonylation of aryl halides using allylamine: from exploration to scale-up. Tetrahedron Lett 49: 5625–5628 CrossRefGoogle Scholar
  318. 318.
    Lesma G, Sacchetti A, Silvani A (2006) Palladium-catalyzed hydroxycarbonylation of aryl and vinyl triflates by in situ generated carbon monoxide under microwave irradiation. Synthesis: 594-96Google Scholar
  319. 319.
    Kormos C, Leadbeater N (2006) Microwave-promoted hydroxycarbonylation in water using gaseous carbon monoxide and pre-pressurized reaction vessels. Synlett: 1663-666Google Scholar
  320. 320.
    Kormos CM and Leadbeater NE (2007). Alkoxycarbonylation of aryl iodides using gaseous carbon monoxide and pre-pressurized reaction vessels in conjunction with microwave heating. Org Biomol Chem 5: 65–68 PubMedCrossRefGoogle Scholar
  321. 321.
    Kormos C, Leadbeater N (2007) Alkoxycarbonylation reactions performed using near-stoichiometric quantities of CO. Synlett: 2006-010Google Scholar
  322. 322.
    Wu X, Rönn R, Gossas T and Larhed M (2005). Easy-to-execute carbonylations: microwave synthesis of acyl sulfonamides using Mo(CO)6 as a solid carbon monoxide source. J Org Chem 70: 3094–3098 PubMedCrossRefGoogle Scholar
  323. 323.
    Wu X, Mahalingam AK, Wan Y and Alterman M (2004). Fast microwave promoted palladium-catalyzed synthesis of phthalides from bromobenzyl alcohols utilizing DMF and Mo(CO)6 as carbon monoxide sources. Tetrahedron Lett 45: 4635–4638 CrossRefGoogle Scholar
  324. 324.
    Wu X, Nilsson P and Larhed M (2005). Microwave-enhanced carbonylative generation of indanones and 3-acylaminoindanones. J Org Chem 70: 346–349 PubMedCrossRefGoogle Scholar
  325. 325.
    Enquist PA, Nilsson P, Edin J and Larhed M (2005). Super fast cobalt carbonyl-mediated synthesis of ureas. Tetrahedron Lett 46: 3335–3339 CrossRefGoogle Scholar
  326. 326.
    Petricci E, Mann A and Schoenfelder A et al (2006). Microwaves make hydroformylation a rapid and easy process. Org Lett 8: 3725–3727 PubMedCrossRefGoogle Scholar
  327. 327.
    Petricci E, Mann A, Salvadori J and Taddei M (2007). Microwave assisted hydroaminomethylation of alkenes. Tetrahedron Lett 48: 8501–8504 CrossRefGoogle Scholar
  328. 328.
    Braga AL, Vargas F, Sehnem JA, Wessjohann LA (2006) Microwave-mediated palladium-catalyzed asymmetric allylic alkylation using chiral-seleno amides. Eur J Org Chem: 4993-997Google Scholar
  329. 329.
    Yeager AR, Min GK, Schaus SE and Porco JA (2006). Exploring skeletal diversity via ring contraction of glycal-derived scaffolds. Org Lett 8: 5065–5068 PubMedCrossRefGoogle Scholar
  330. 330.
    Lipshutz BH, Frieman BA and Lee CT et al (2006). Microwave-assisted heterogeneous cross-coupling reactions catalyzed by nickel-in-charcoal (Ni/C). Chem Asian J 1: 417–429 PubMedCrossRefGoogle Scholar
  331. 331.
    Lipshutz BH, Butler T and Swift E (2008). C–C bond formation catalyzed heterogeneously by nickel-on-graphite (Ni/C g). Org Lett 10: 697-00 PubMedCrossRefGoogle Scholar
  332. 332.
    Lerebours R and Wolf C (2007). Palladium(II)-catalyzed conjugate addition of arylsiloxanes in water. Org Lett 9: 2737–2740 PubMedCrossRefGoogle Scholar
  333. 333.
    Frost CG, Penrose SD and Lambshead K et al (2007). Rhodium-catalyzed conjugate addition-enantioselective protonation: the synthesis of α, α′-dibenzyl esters. Org Lett 9: 2119–2122 PubMedCrossRefGoogle Scholar
  334. 334.
    Hargrave JD, Herbert J and Bish G et al (2006). Rhodium-catalysed addition of organotrialkoxysilanes to α-substituted acrylic esters. Org Biomol Chem 4: 3235–3241 PubMedCrossRefGoogle Scholar
  335. 335.
    Iyer PS, O’Malley MM and Lucas MC (2007). Microwave-enhanced rhodium-catalyzed conjugate-addition of aryl boronic acids to unprotected maleimides. Tetrahedron Lett 48: 4413–4418 CrossRefGoogle Scholar
  336. 336.
    Navarro O, Marion N and Oonishi Y et al (2006). Suzuki–Miyaura, α-ketone arylation and dehalogenation reactions catalyzed by a versatile N-heterocyclic carbene-palladacycle complex. J Org Chem 71: 685–692 PubMedCrossRefGoogle Scholar
  337. 337.
    Malcolm SC, Ribe S and Wang F et al (2005). Efficient and scalable arylation of bicyclic lactones to form quaternary centers using conventional and microwave radiation. Tetrahedron Lett 46: 6871–6873 CrossRefGoogle Scholar
  338. 338.
    Beeler AB, Su S, Singleton CA and Porco JA (2007). Discovery of chemical reactions through multidimensional screening. J Am Chem Soc 129: 1413–1419 PubMedCrossRefGoogle Scholar
  339. 339.
    Lautens M, Tayama E and Herse C (2005). Palladium-catalyzed intramolecular coupling between aryl iodides and allyl moieties via thermal and microwave-assisted conditions. J Am Chem Soc 127: 72–73 PubMedCrossRefGoogle Scholar
  340. 340.
    Alberico D, Lautens M (2006) Palladium-catalyzed alkylation-alkenylation reactions: rapid access to tricyclic mescaline analogues. Synlett: 2969-972Google Scholar
  341. 341.
    Mariampillai B, Alberico D and Bidau V et al (2006). Synthesis of polycyclic benzonitriles via a one-pot aryl alkylation/cyanation reaction. J Am Chem Soc 128: 14436–14437 PubMedCrossRefGoogle Scholar
  342. 342.
    Alberico D, Lautens M (2006) Palladium-catalyzed alkylation–alkenylation reactions: rapid access to tricyclic mescaline analogues. Synlett: 2969-972Google Scholar
  343. 343.
    Alberico D, Rudolph A and Lautens M (2007). Synthesis of tricyclic heterocycles via a tandem aryl alkylation/Heck coupling sequence. J Org Chem 72: 775–781 PubMedCrossRefGoogle Scholar
  344. 344.
    Mariampillai B, Alliot J and Li M et al (2007). A convergent synthesis of polysubstituted aromatic nitriles via palladium-catalyzed C–H functionalization. J Am Chem Soc 129: 15372–15379 PubMedCrossRefGoogle Scholar
  345. 345.
    Rudolph A, Rackelmann N and Marc-Olivier TS et al (2009). Application of secondary alkyl halides to a domino aryl alkylation reaction for the synthesis of aromatic heterocycles. J Org Chem 74: 289–297 PubMedCrossRefGoogle Scholar
  346. 346.
    Pitts MR, McCormack P and Whittall J (2006). Optimisation and scale-up of microwave assisted cyanation. Tetrahedron 62: 4705–4708 CrossRefGoogle Scholar
  347. 347.
    Chen G, Weng J, Zheng Z et al (2008) Pd/C-catalyzed cyanation of aryl halides in aqueous PEG. Eur J Org Chem: 3524-3528Google Scholar
  348. 348.
    Christoforou IC and Koutentis PA (2006). New regiospecific isothiazole C–C coupling chemistry. Org Biomol Chem 4: 3681–3693 PubMedCrossRefGoogle Scholar
  349. 349.
    Gao G, Brown N and Minatoya M et al (2008). N-Vinylpyridinium tetrafluoroborate salts as reagents for the stereoselective and regioselective synthesis of symmetrical (2E, 4E)-1, 6-dioxo-2, 4-dienes. Tetrahedron Lett 49: 6491–6494 CrossRefGoogle Scholar
  350. 350.
    Fager-Jokela E, Kaasalainen E and Leppänen K et al (2008). Development of intermolecular additive free Pauson–Khand reactions for estrone E-ring extension using microwaves. Tetrahedron 64: 10381–10387 CrossRefGoogle Scholar
  351. 351.
    Lee HW, Kwong FY, Chan A (2008) Rh-catalyzed aqueous Pauson-Khand-type cycloaddition in microwave-irradiated medium. Synlett: 1553-556Google Scholar
  352. 352.
    Shanmugasundaram M, Garcia-Martinez I and Li Q et al (2005). Microwave-assisted solid-phase Dötz benzannulation reaction: a facile synthesis of 2, 3-disubstituted-1, 4-naphthoquinones. Tetrahedron Lett 46: 7545–7548 CrossRefGoogle Scholar
  353. 353.
    Bour C, Suffert J (2006) 4-exo-dig Cyclocarbopalladation: a straightforward synthesis of cyclobutanediols from acyclic γ-bromopropargylic diols under microwave irradiation conditions. Eur J Org Chem: 1390-395Google Scholar
  354. 354.
    Blond G, Bour C and Salem B et al (2008). A new Pd-catalyzed cascade reaction for the synthesis of strained aromatic polycycles. Org Lett 10: 1075–1078 PubMedCrossRefGoogle Scholar
  355. 355.
    Oi S, Funayama R and Hattori T et al (2008). Nitrogen-directed ortho-arylation and -heteroarylation of aromatic rings catalyzed by ruthenium complexes. Tetrahedron 64: 6051–6059 CrossRefGoogle Scholar
  356. 356.
    Jiang W, Allan G and Fiordeliso JJ et al (2006). New progesterone receptor antagonists: phosphorus-containing 11β-aryl-substituted steroids. Bioorg Med Chem 14: 6726–6732 PubMedCrossRefGoogle Scholar
  357. 357.
    Iwasaki M, Hayashi S and Hirano K et al (2007). Microwave-assisted palladium-catalyzed allylation of aryl halides with homoallyl alcohols via retro-allylation. Tetrahedron 63: 5200–5203 CrossRefGoogle Scholar
  358. 358.
    Tundel RE, Anderson KW and Buchwald SL (2006). Expedited palladium-catalyzed amination of aryl nonaflates through the use of microwave-irradiation and soluble organic amine bases. J Org Chem 71: 430–433 PubMedCrossRefGoogle Scholar
  359. 359.
    Jensen TA, Liang X, Tanner D and Skjaerbaek N (2004). Rapid and efficient microwave-assisted synthesis of aryl aminobenzophenones using Pd-catalyzed amination. J Org Chem 69: 4936–4947 PubMedCrossRefGoogle Scholar
  360. 360.
    Zhang HQ, Xia Z, Vasudevan A and Djuric SW (2006). Efficient Pd-catalyzed synthesis of 2-arylaminopyrimidines via microwave irradiation. Tetrahedron Lett 47: 4881–4884 CrossRefGoogle Scholar
  361. 361.
    Smith JA, Jones RK, Booker GW and Pyke SM (2008). Sequential and selective Buchwald–Hartwig amination reactions for the controlled functionalization of 6-bromo-2-chloroquinoline: synthesis of ligands for the Tec Src homology 3 domain. J Org Chem 73: 8880–8892 PubMedCrossRefGoogle Scholar
  362. 362.
    Van Baelen G and Maes BUW (2008). Study of the microwave-assisted hydrolysis of nitriles and esters and the implementation of this system in rapid microwave-assisted Pd-catalyzed amination. Tetrahedron 64: 5604–5619 CrossRefGoogle Scholar
  363. 363.
    Broggi J, Clavier H and Nolan SP (2008). N-Heterocyclic carbenes (NHCs) containing N-C-palladacycle complexes: synthesis and reactivity in aryl amination reactions. Organometallics 27: 5525–5531 CrossRefGoogle Scholar
  364. 364.
    Harmata H, Hong X and Ghosh SK (2004). Microwave-assisted N-arylation of a sulfoximine with aryl chlorides. Tetrahedron Lett 45: 5233–5236 CrossRefGoogle Scholar
  365. 365.
    Tietze M, Iglesias A and Merisor E et al (2005). Efficient methods for the synthesis of 2-hydroxyphenazine based on the Pd-catalyzed N-arylation of aryl bromides. Org Lett 7: 1549–1552 PubMedCrossRefGoogle Scholar
  366. 366.
    Poondra RR and Turner NJ (2005). Microwave-assisted sequential amide bond formation and intramolecular amidation: a rapid entry to functionalized oxindoles. Org Lett 7: 863–866 PubMedCrossRefGoogle Scholar
  367. 367.
    Bonnaterre F, Bois-Choussy M and Zhu J (2006). Rapid access to oxindoles by the combined use of an Ugi four-component reaction and a microwave-assisted intramolecular Buchwald–Hartwig amidation reaction. Org Lett 8: 4351–4354 PubMedCrossRefGoogle Scholar
  368. 368.
    Alen J, Robeyns K and De Borggraeve WM et al (2008). Synthesis of pyrazino[1,2-a]benzimidazol-1(2H)ones via a microwave assisted Buchwald-Hartwig type reaction. Tetrahedron 64: 8128–8133 CrossRefGoogle Scholar
  369. 369.
    Guo D, Huang H and Xu J et al (2008). Efficient iron-catalyzed N-arylation of aryl halides with amines. Org Lett 10: 4513–4516 PubMedCrossRefGoogle Scholar
  370. 370.
    Yeh VSC and Wiedeman PE (2006). Practical Cu-catalyzed amination of functionalized heteroaryl halides. Tetrahedron Lett 47: 6011–6016 CrossRefGoogle Scholar
  371. 371.
    Rottger S, Sjoberg PJR and Larhed M (2007). Microwave-enhanced copper-catalyzed N-arylation of free and protected amino acids in water. J Comb Chem 9: 204–209 PubMedCrossRefGoogle Scholar
  372. 372.
    Hafner T, Kunz D (2007) Synthesis of symmetrically and unsymmetrically substituted N, N′ diarylimidazolin-2-ones by copper-catalyzed arylamidation under microwave-assisted and conventional conditions. Synthesis: 1403-411Google Scholar
  373. 373.
    Chen S, Huang H and Liu X et al (2008). Microwave-assisted efficient copper-promoted N-arylation of amines with arylboronic acids. J Comb Chem 10: 358–360 PubMedCrossRefGoogle Scholar
  374. 374.
    Singh BK, Appukkuttan P and Claerhout S et al (2006). Copper(II)-mediated cross-coupling of arylboronic acids and 2(1H)-pyrazinones facilitated by microwave irradiation with simultaneous cooling. Org Lett 8: 1863–1866 PubMedCrossRefGoogle Scholar
  375. 375.
    Pabba C, Wang HJ and Mulligan SR et al (2005). Microwave-assisted synthesis of 1-aryl-1H-indazoles via one-pot two-step Cu-catalyzed intramolecular N-arylation of arylhydrazones. Tetrahedron Lett 46: 7553–7557 CrossRefGoogle Scholar
  376. 376.
    Yadav LD, Yadav BS, Rai VK (2006) Active-copper-promoted expeditious N-arylations in aqueous media under microwave irradiation. Synthesis: 1868-872Google Scholar
  377. 377.
    Zhu X, Ma Y, Su L et al (2006) Bis(cyclohexanone) oxalyldihydrazone/copper(II) oxide—a novel and efficient catalytic system for Ullmann-type C–N coupling in pure water. Synthesis: 3955-962Google Scholar
  378. 378.
    Lipshutz BH, Unger JB and Taft BR (2007). Copper-in-charcoal (Cu/C) promoted diaryl ether formation. Org Lett 9: 1089–1092 PubMedCrossRefGoogle Scholar
  379. 379.
    Lipshutz BH, Nihan DM and Vinogradova E et al (2008). Copper + nickel-in-charcoal (Cu-Ni/C): a bimetallic, heterogeneous catalyst for cross-couplings. Org Lett 10: 4279–4282 PubMedCrossRefGoogle Scholar
  380. 380.
    Manbeck GF, Lipman AJ and Stockland RA et al (2005). Organosoluble copper clusters as precatalysts for carbon–heteroelement bond-forming reactions: microwave and conventional heating. J Org Chem 70: 244–250 PubMedCrossRefGoogle Scholar
  381. 381.
    D’Angelo ND, Peterson JJ and Booker SK et al (2006). Effect of microwave heating on Ullmann-type heterocycle-aryl ether synthesis using chloro-heterocycles. Tetrahedron Lett 47: 5045–5048 CrossRefGoogle Scholar
  382. 382.
    Rudolph J, Esler WP and O’Connor S et al (2007). Quinazolinone derivatives as orally available ghrelin receptor antagonists for the treatment of diabetes and obesity. J Med Chem 50: 5202–5216 PubMedCrossRefGoogle Scholar
  383. 383.
    Zhu XH, Chen G and Ma Y et al (2007). A general, highly efficient Ullmann C–O coupling reaction under microwave irradiation and the effects of water. Chin J Chem 25: 546–552 CrossRefGoogle Scholar
  384. 384.
    Kormos CM and Leadbeater NE (2006). Direct conversion of aryl halides to phenols using high-temperature or near-critical water and microwave heating. Tetrahedron 62: 4728–4732 CrossRefGoogle Scholar
  385. 385.
    Raders SM and Verkade JG (2008). P(i-BuNCH2CH2)3N: an efficient promoter for the microwave synthesis of diaryl ethers. Tetrahedron Lett 49: 3507–3511 CrossRefGoogle Scholar
  386. 386.
    Viirre RD, Evindar G and Batey RA (2008). Copper-catalyzed domino annulation approaches to the synthesis of benzoxazoles under microwave-accelerated and conventional thermal conditions. J Org Chem 73: 3452–3459 PubMedCrossRefGoogle Scholar
  387. 387.
    Thasana N, Worayuthakarn R and Kradanrat P et al (2007). Copper(I)-mediated and microwave-assisted Caryl-Ocarboxylic coupling: synthesis of benzopyranones and isolamellarin alkaloids. J Org Chem 72: 9379–9382 PubMedCrossRefGoogle Scholar
  388. 388.
    Li Z, Sun H and Jiang H et al (2008). Copper-catalyzed intramolecular cyclization to N-substituted 1,3-dihydrobenzimidazol-2-ones. Org Lett 10: 3263–3266 PubMedCrossRefGoogle Scholar
  389. 389.
    Ranu BD, Saha A and Jana R (2007). Microwave-assisted simple and efficient ligand free copper nanoparticle catalyzed aryl–sulfur bond formation. Adv Synth Catal 349: 2690–2696 CrossRefGoogle Scholar
  390. 390.
    Andersen J, Madsen U, Björkling F, Liang X (2005) Rapid synthesis of aryl azides from aryl halides under mild conditions. Synlett: 2209-213Google Scholar
  391. 391.
    Liu XY, Li CH and Che CM (2006). Phosphine gold(I)-catalyzed hydroamination of alkenes under thermal and microwave-assisted conditions. Org Lett 8: 2707–2710 PubMedCrossRefGoogle Scholar
  392. 392.
    Balan D and Adolfsson H (2004). Efficient microwave-assisted formation of functionalized 2,5-dihydropyrroles using ruthenium-catalyzed ring-closing metathesis. Tetrahedron Lett 45: 3089–3092 CrossRefGoogle Scholar
  393. 393.
    Appukkuttan P, Dehaen W and Van der Eycken E (2005). Microwave-enhanced synthesis of N-shifted buflavine analogues via a Suzuki-ring-closing metathesis protocol. Org Lett 7: 2723–2726 PubMedCrossRefGoogle Scholar
  394. 394.
    Appukkuttan P, Dehaen W and Van der Eycken E (2007). Microwave-assisted transition-metal-catalyzed synthesis of N-shifted and ring-expanded buflavine analogues. Chem Eur J 13: 6452–6460 CrossRefGoogle Scholar
  395. 395.
    Sunderhaus JD, Dockendorff C and Martin SF (2007). Applications of multicomponent reactions for the synthesis of diverse heterocyclic scaffolds. Org Lett 9: 4223–4226 PubMedCrossRefGoogle Scholar
  396. 396.
    Nosse B, Schall A, Jeong WB and Reiser O (2005). Optimization of ring-closing metathesis: inert gas sparging and microwave irradiation. Adv Synth Catal 347: 1869–1874 CrossRefGoogle Scholar
  397. 397.
    Chapman RN and Arora PS (2006). Optimized synthesis of hydrogen-bond surrogate helices: surprising effects of microwave heating on the activity of Grubbs catalysts. Org Lett 8: 5825–5828 PubMedCrossRefGoogle Scholar
  398. 398.
    Robinson AJ, Elaridi J and Van Lierop BJ et al (2007). Microwave-assisted RCM for the synthesis of carbocyclic peptides. J Pept Sci 13: 280–285 PubMedCrossRefGoogle Scholar
  399. 399.
    Collins SK, Grandbois A and Vachon MP et al (2006). Preparation of helicenes through olefin metathesis. Angew Chem Int Ed 45: 2923–2926 CrossRefGoogle Scholar
  400. 400.
    Collins SK (2006). Preparation of cyclic molecules bearing “strained” olefins using olefin metathesis. J Organomet Chem 691: 5122–5128 CrossRefGoogle Scholar
  401. 401.
    Perez-Balado C, Nebbioso A and Rodriguez-Grana P et al (2007). Bispyridinium dienes: histone deacetylase inhibitors with selective activities. J Med Chem 50: 2497–2505 PubMedCrossRefGoogle Scholar
  402. 402.
    Spandl RJ, Rudyk H, Spring DR (2008) Exploiting domino enyne metathesis mechanisms for skeletal diversity generation. Chem Commun 3001-003Google Scholar
  403. 403.
    Bargiggia FC and Murray WV (2005). Cross-metathesis assisted by microwave irradiation. J Org Chem 70: 9636–9639 PubMedCrossRefGoogle Scholar
  404. 404.
    Morris T, Sandham D and Caddick S (2007). A microwave enhanced cross-metathesis approach to peptidomimetics. Org Biomol Chem 5: 1025–1027 PubMedCrossRefGoogle Scholar
  405. 405.
    Elaridi J, Patel J and Jackson WR et al (2006). Controlled synthesis of (S,S)-2,7-diaminosuberic acid: a method for regioselective construction of dicarba analogues of multicystine-containing peptides. J Org Chem 71: 7538–7545 PubMedCrossRefGoogle Scholar
  406. 406.
    Castagnolo D, Renzulli ML and Galletti E et al (2005). Microwave-assisted ethylene–alkyne cross-metathesis: synthesis of chiral 2-(N-1-acetyl-1-arylmethyl)-1,3-butadienes. Tetrahedron Asymmetry 16: 2893–2896 CrossRefGoogle Scholar
  407. 407.
    Castagnolo D, Giorgi G, Spinosa R et al (2007) Practical syntheses of enantiomerically pure N-acetylbenzhydrylamines. Eur J Org Chem: 3676-686Google Scholar
  408. 408.
    Fustero S, Jiménez D, Sánchez-Roselló M and del Pozo C (2007). Microwave-assisted tandem cross metathesis intramolecular aza-Michael reaction: an easy entry to cyclic β-amino carbonyl derivatives. J Am Chem Soc 129: 6700–6701 PubMedCrossRefGoogle Scholar
  409. 409.
    Kirschning A, Harmrolfs K and Mennecke K et al (2008). Homo- and heterogeneous Ru-based metathesis catalysts in cross-metathesis of 15-allylestrone—towards 17β-hydroxysteroid dehydrogenase type 1 inhibitors. Tetrahedron Lett 49: 3019–3022 CrossRefGoogle Scholar
  410. 410.
    Lumini M, Cordero FM, Pisaneschi F et al (2008) Straightforward synthesis of α-substituted prolines by cross-metathesis. Eur J Org Chem: 2817-824Google Scholar
  411. 411.
    Wang L, Maddess ML and Lautens M (2007). Convenient access to functionalized vinylcyclopentenols from alkynyloxiranes. J Org Chem 72: 1822–1825 PubMedCrossRefGoogle Scholar
  412. 412.
    Comer E, Rohan E and Deng L et al (2007). An approach to skeletal diversity using functional group pairing of multifunctional scaffolds. Org Lett 9: 2123–2126 PubMedCrossRefGoogle Scholar
  413. 413.
    Debleds O and Campagne JM (2008). 1,5-Enyne metathesis. J Am Chem Soc 130: 1562–1563 PubMedCrossRefGoogle Scholar
  414. 414.
    Lewis JC, Wu JY, Bergman RG and Ellman JA (2006). Microwave-promoted rhodium-catalyzed arylation of heterocycles through C–H bond activation. Angew Chem Int Ed 45: 1589–1591 CrossRefGoogle Scholar
  415. 415.
    Lewis JC, Berman AM, Bergman RG and Ellman JA (2008). Rh(I)-catalyzed arylation of heterocycles via C–H bond activation: expanded scope through mechanistic insight. J Am Chem Soc 130: 2493–2500 PubMedCrossRefGoogle Scholar
  416. 416.
    Yanagisawa S, Sudo T and Noyori R et al (2006). Direct C–H arylation of (hetero)arenes with aryl iodides via rhodium catalysis. J Am Chem Soc 128: 11748–11749 PubMedCrossRefGoogle Scholar
  417. 417.
    Yanagisawa S, Sudo T and Noyori R et al (2008). Direct coupling of arenes and iodoarenes catalyzed by a rhodium complex with a strongly π-accepting phosphite ligand. Tetrahedron 64: 6073–6081 CrossRefGoogle Scholar
  418. 418.
    Yanagisawa S, Ueda K and Taniguchi T et al (2008). Potassium t-butoxide alone can promote the biaryl coupling of electron- deficient nitrogen heterocycles and haloarenes. Org Lett 10: 4673–4676 PubMedCrossRefGoogle Scholar
  419. 419.
    Sahnoun S, Messaoudi S and Peyrat JF et al (2008). Microwave-assisted Pd(OH)2-catalyzed direct C–H arylation of free-(NH2) adenines with aryl halides. Tetrahedron Lett 49: 7279–7283 CrossRefGoogle Scholar
  420. 420.
    Ermolat’ev DS, Gimenez VN and Babaev EV et al (2006). Efficient Pd(0)-mediated microwave-assisted arylation of 2-substituted imidazo[1,2-a]pyrimidines. J Comb Chem 8: 659–663 PubMedCrossRefGoogle Scholar
  421. 421.
    Besselièvre F, Mahuteau-Betzer F, Grierson DS and Piguel S (2008). Ligandless microwave-assisted Pd/Cu-catalyzed direct arylation of oxazoles. J Org Chem 73: 3278–3280 PubMedCrossRefGoogle Scholar
  422. 422.
    Iwasaki M, Yorimitsu H and Oshima K (2007). Microwave-assisted palladium-catalyzed direct arylation of 1,4-disubstituted 1,2,3-triazoles with aryl chlorides. Chem Asian J 2: 1430–1435 PubMedCrossRefGoogle Scholar
  423. 423.
    Hull KL, Anani WQ and Sanford MS (2006). Palladium-catalyzed fluorination of carbon–hydrogen bonds. J Am Chem Soc 128: 7134–7135 PubMedCrossRefGoogle Scholar
  424. 424.
    Bedford RB and Betham M (2006). N–H carbazole synthesis from 2-chloroanilines via consecutive amination and C–H activation. J Org Chem 71: 9403–9410 PubMedCrossRefGoogle Scholar
  425. 425.
    Bedford RB, Betham M and Charmant JPH et al (2008). Intramolecular direct arylation in the synthesis of fluorinated carbazoles. Tetrahedron 64: 6038–6050 CrossRefGoogle Scholar
  426. 426.
    Hostyn S, Van Baelen G and Lemière GLF et al (2008). Synthesis of α-carbolines starting from 2,3-dichloropyridines and substituted anilines. Adv Synth Catal 350: 2653–2660 CrossRefGoogle Scholar
  427. 427.
    Campeau LC, Schipper DJ and Fagnou K (2008). Site-selective sp2 and benzylic sp3 palladium-catalyzed direct arylation. J Am Chem Soc 130: 3266–3267 PubMedCrossRefGoogle Scholar
  428. 428.
    Khanetskyy B, Dallinger D and Kappe CO (2004). Combining Biginelli multicomponent and click chemistry: generation of 6-(1,2,3-triazol-1-yl)-dihydropyrimidone libraries. J Comb Chem 6: 884–892 PubMedCrossRefGoogle Scholar
  429. 429.
    Appukkuttan P, Dehaen W, Fokin VV and Van der Eycken E (2004). A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org Lett 6: 4223–4225 PubMedCrossRefGoogle Scholar
  430. 430.
    Beckmann HSG and Wittmann V (2007). One-pot procedure for diazo transfer and azide–alkyne cycloaddition: triazole linkages from amines. Org Lett 9: 1–4 PubMedCrossRefGoogle Scholar
  431. 431.
    Moorhouse A, Moses JE (2008) Microwave enhancement of a ‘one-pot’ tandem azidation-‘click’ cycloaddition of anilines. Synlett: 2089-092Google Scholar
  432. 432.
    Lipshutz BH and Taft BR (2006). Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew Chem Int Ed 45: 8235–8238 CrossRefGoogle Scholar
  433. 433.
    Rasmussen LK, Boren BC and Fokin VV (2007). Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. Org Lett 9: 5337–5339 PubMedCrossRefGoogle Scholar
  434. 434.
    Pradere U, Roy V and McBrayer TR et al (2008). Preparation of ribavirin analogues by copper- and ruthenium-catalyzed azide–alkyne 1,3-dipolar cycloaddition. Tetrahedron 64: 9044–9051 CrossRefGoogle Scholar
  435. 435.
    Horneff T, Chuprakov S and Chernyak N et al (2008). Rhodium-catalyzed transannulation of 1,2,3-triazoles with nitriles. J Am Chem Soc 130: 14972–14974 PubMedCrossRefGoogle Scholar
  436. 436.
    Pietrzik N, Schips C, Ziegler T (2008) Efficient synthesis of glycosylated asparaginic acid building blocks via click chemistry. Synthesis: 519-26Google Scholar
  437. 437.
    Broggi J, Díez-González S, Petersen J et al (2008) Study of copper(I) catalysts for the synthesis of carbanucleosides via azide–alkyne 1,3-dipolar cycloaddition. Synthesis: 141-48Google Scholar
  438. 438.
    Joosten JAF, Tholen NTH, El Maate FA et al (2005) High-yielding microwave-assisted synthesis of triazole-linked glycodendrimers by copper-catalyzed [3+2] cycloaddition. Eur J Org Chem: 3182-185Google Scholar
  439. 439.
    Song Y, Kohlmeir EK and Meade TJ (2008). Synthesis of multimeric MR contrast agents for cellular imaging. J Am Chem Soc 130: 6662–6663 PubMedCrossRefGoogle Scholar
  440. 440.
    Ortega-Muñoz M, Morales-Sanfrutos J and Perez-Balderas F et al (2007). Click multivalent neoglycoconjugates as synthetic activators in cell adhesion and stimulation of monocyte/machrophage cell lines. Org Biomol Chem: 5: 2291–2301 CrossRefGoogle Scholar
  441. 441.
    Fazio MA, Lee OP and Schuster DI (2008). First triazole-linked porphyrin-fullerene dyads. Org Lett 10: 4979–4982 PubMedCrossRefGoogle Scholar
  442. 442.
    Géci I, Vyacheslav FV and Pedersen EB (2007). Stabilization of parallel triplexes by twisted intercalating nucleic acids (TINAs) incorporating 1,2,3-triazole units and prepared by microwave-accelerated click chemistry. Chem Eur J 13: 6379–6386 CrossRefGoogle Scholar
  443. 443.
    Angelo NG and Arora PS (2007). Solution- and solid-phase synthesis of triazole oligomers that display protein-like functionality. J Org Chem 72: 7963–7967 PubMedCrossRefGoogle Scholar
  444. 444.
    Castagnolo D, Dessì F and Radi M et al (2007). Synthesis of enantiomerically pure α-[4-(1-substituted)-1,2,3-triazol-4-yl]-benzylacetamides via microwave-assisted click chemistry: towards new potential antimicrobial agents. Tetrahedron Asymmetry 18: 1345–1350 CrossRefGoogle Scholar
  445. 445.
    Nieto-Oberhuber C, Pérez-Galán P and Herrero-Gómez E et al (2008). Gold(I)-catalyzed intramolecular [4+2] cycloadditions of arylalkynes or 1,3-enynes with alkenes: scope and mechanism. J Am Chem Soc 130: 269–279 PubMedCrossRefGoogle Scholar
  446. 446.
    Marion N, Gealageas R and Nolan SP (2007). [(NHC)AuI]-catalyzed rearrangement of allylic acetates. Org Lett 9: 2653–2656 PubMedCrossRefGoogle Scholar
  447. 447.
    Labonne A, Zani L, Hintermann L and Bolm C (2007). Redox- neutral synthesis of β-amino aldehydes from imines by an alkynylation/hydration sequence. J Org Chem 72: 5704–5708 PubMedCrossRefGoogle Scholar
  448. 448.
    Stockland JRA, Lipman AJ and Bawiec JA et al (2006). Remarkable tolerance of ethynyl steroids to air and water in microwave-assisted hydrophosphinylation: reaction scope and limitations. J Organomet Chem 691: 4042–4053 CrossRefGoogle Scholar
  449. 449.
    Liu XY, Ding P, Huang JS and Che CM (2007). Synthesis of substituted 1,2-dihydroquinolines and quinolines from aromatic amines and alkynes by gold(I)-catalyzed tandem hydroamination–hydroarylation under microwave-assisted conditions. Org Lett 9: 2645–2648 PubMedCrossRefGoogle Scholar
  450. 450.
    Liu XY, Li CH and Che CM (2006). Phosphine gold(I)-catalyzed hydroamination of alkenes under thermal and microwave-assisted conditions. Org Lett 8: 2707–2710 PubMedCrossRefGoogle Scholar
  451. 451.
    Wang MZ, Wong MK and Che CM (2008). Gold(I)-catalyzed intermolecular hydroarylation of alkenes with indoles under thermal and microwave-assisted conditions. Chem Eur J 14: 8353–8364 CrossRefGoogle Scholar
  452. 452.
    Prior AM and Robinson RS (2008). An assessment of late transition metals as hydroamination catalysts in the cyclization of C-propargyl vinylogous amides into pyrroles. Tetrahedron Lett 49: 411–414 CrossRefGoogle Scholar
  453. 453.
    Ishibashi K, Takahashi M and Yokota Y et al (2005). Ruthenium-catalyzed isomerization of alkenol into alkanone in water under irradiation of microwaves. Chem Lett 34: 664–665 CrossRefGoogle Scholar
  454. 454.
    Fairlamb IJS, McGlacken GP, Weissberger F (2006) Ruthenium(II)-catalysed cycloisomerisation of 1,6-dienes by focused microwave dielectric heating: improved rates and selectivities leading to exo-methylenecyclopentanes. Chem Commun: 988-90Google Scholar
  455. 455.
    Takacs JM, Venkataraman S and Andrews RN et al (2005). N-Heterocyclic carbene-palladium catalysts for the bisdiene cyclization-trapping reaction with sulfonamides under thermal and microwave conditions. J Organomet Chem 690: 6205–6209 CrossRefGoogle Scholar
  456. 456.
    Lee YT, Choi SY and Chung YK (2007). Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates. Tetrahedron Lett 48: 5673–5677 CrossRefGoogle Scholar
  457. 457.
    Sherman ES, Fuller PH and Kasi D et al (2007). Pyrrolidine and piperidine formation via copper(II) carboxylate-promoted intramolecular carboamination of unactivated olefins: diastereoselectivity and mechanism. J Org Chem 72: 3896–3905 PubMedCrossRefGoogle Scholar
  458. 458.
    Rodríguez B and Bolm C (2006). Thermal effects in the organocatalytic asymmetric Mannich reaction. J Org Chem 71: 2888–2891 PubMedCrossRefGoogle Scholar
  459. 459.
    Mossé S and Alexakis A (2006). Organocatalyzed asymmetric reactions via microwave activation. Org Lett 8: 3577–3580 PubMedCrossRefGoogle Scholar
  460. 460.
    Baumann T, Bächle M, Hartmann C, Bräse S (2008) Thermal effects in the organocatalytic asymmetric α-amination of disubstituted aldehydes with azodicarboxylates: a high-temperature organocatalysis. Eur J Org Chem: 2207-212Google Scholar
  461. 461.
    Westermann B and Neuhaus C (2005). Dihydroxyacetone in amino acid catalyzed Mannich-type reactions. Angew Chem Int Ed 44: 4077–4079 CrossRefGoogle Scholar
  462. 462.
    Massi A, Nuzzi A and Dondoni A (2007). Microwave-assisted organocatalytic anomerization of α-C-glycosylmethyl aldehydes and ketones. J Org Chem 72: 10279–10282 PubMedCrossRefGoogle Scholar
  463. 463.
    Trost BM and Zhang T (2006). Asymmetric synthesis of α-substituted aldehydes by Pd-catalyzed asymmetric allylic alkylation-alkene isomerization-Claisen rearrangement. Org Lett 8: 6007–6010 PubMedCrossRefGoogle Scholar
  464. 464.
    Craig D, Gavin DH (2006) Total synthesis of the cytotoxic guaipyridine sesquiterpene alkaloid (+)-cananodine. Eur J Org Chem: 3558-561Google Scholar
  465. 465.
    Lin YL, Cheng JY and Chu YH (2007). Microwave-accelerated Claisen rearrangement in bicyclic imidazolium [b-3C-im][NTf2] ionic liquid. Tetrahedron 63: 10949–10957 CrossRefGoogle Scholar
  466. 466.
    Gonda J, Martinková M and Zadrosová A et al (2007). Microwave accelerated aza-Claisen rearrangements. Tetrahedron Lett 48: 6912–6915 CrossRefGoogle Scholar
  467. 467.
    McIntosh CE, Martínez I, Ovaska TV (2004) Microwave enhanced tandem 5-exo cyclization/Claisen rearrangement reactions: a convenient route to cycloheptanoid ring systems. Synlett: 2579-581Google Scholar
  468. 468.
    Ovaska TV and Kyne RE (2008). Intramolecular thermal allenyne [2+2] cycloadditions: facile construction of the 5-6-4 ring core of sterpurene. Tetrahedron Lett 49: 376–378 PubMedCrossRefGoogle Scholar
  469. 469.
    Nicolaou KC, Lister T, Denton RM and Gelin CF (2007). Cascade reactions involving formal [2+2] thermal cycloadditions: total synthesis of artochamins F, H, I, and J. Angew Chem Int Ed 46: 7501–7505 CrossRefGoogle Scholar
  470. 470.
    Pelc MJ and Zakarian A (2006). Synthesis of the A,G-spiroimine of pinnatoxins by a microwave-assisted tandem Claisen–Mislow–Evans rearrangement. Tetrahedron Lett 47: 7519–7523 CrossRefGoogle Scholar
  471. 471.
    Jacob AM and Moody CJ (2005). Microwave-assisted combined Mitsunobu reaction-Claisen rearrangement and microwave-assisted phenol oxidation: rapid synthesis of 2,6-disubstituted-1,4-benzoquinone natural products. Tetrahedron Lett 46: 8823–8825 CrossRefGoogle Scholar
  472. 472.
    McErlean CSP and Moody CJ (2007). First synthesis of N-(3-carboxylpropyl)-5-amino-2-hydroxy-3-tridecyl-1,4-benzoquinone, an unusual quinone isolated from Embelia ribes. J Org Chem 72: 10298–10301 PubMedCrossRefGoogle Scholar
  473. 473.
    Quesada E, Taylor R (2005) Tandem Horner–Wadsworth–Emmons olefination/Claisen rearrangement/hydrolysis sequence: remarkable acceleration in water with microwave irradiation. Synthesis: 3193-195Google Scholar
  474. 474.
    Bremner WS and Organ MG (2008). Formation of substituted pyrroles via an imine condensation/aza-Claisen rearrangement/imine-allene cyclization process by MAOS. J Comb Chem 10: 142–147 PubMedCrossRefGoogle Scholar
  475. 475.
    Baran PS, O’Malley DP and Zografos AL (2004). Sceptrin as a potential biosynthetic precursor to complex pyrrole-imidazole alkaloids: the total synthesis of ageliferin. Angew Chem Int Ed 43: 2674–2677 CrossRefGoogle Scholar
  476. 476.
    Steinhardt SE, Silverston JS and Vanderwal CD (2008). Stereocontrolled synthesis of Z-dienes via an unexpected pericyclic cascade rearrangement of 5-amino-2,4-pentadienals. J Am Chem Soc 130: 7560–7561 PubMedCrossRefGoogle Scholar
  477. 477.
    Trost BM and Gutierrez AC (2007). Ruthenium-catalyzed cycloisomerization-6π-cyclization: a novel route to pyridines. Org Lett 9: 1473–1476 PubMedCrossRefGoogle Scholar
  478. 478.
    Métro TX, Pardo DG and Cossy J (2007). Highly enantioselective synthesis of β-amino alcohols: a catalytic version. J Org Chem 72: 6556–6561 PubMedCrossRefGoogle Scholar
  479. 479.
    Métro TX, Pardo GD, Cossy J (2007) Stereospecific rearrangement of β-amino alcohols catalyzed by H 2 SO 4. Synlett: 2888-890Google Scholar
  480. 480.
    Moseley JD, Sankey RF, Tang ON and Gilday JP (2006). The Newman–Kwart rearrangement re-evaluated by microwave synthesis. Tetrahedron 62: 4685–4689 CrossRefGoogle Scholar
  481. 481.
    Constant S, Tortoioli S and Müller J et al (2007). Air- and microwave-stable (C 5 H 5)Ru catalysts for improved regio- and enantioselective Carroll rearrangements. Angew Chem Int Ed 46: 8979–8982 CrossRefGoogle Scholar
  482. 482.
    Pouwer RH, Schill H, Williams CM et al (2007) Investigating direct access to 2-oxospiro[4.5]decanones via 6π-electrocyclisation. Eur J Org Chem: 4699-705Google Scholar
  483. 483.
    Douelle F, Tal L, Greaney MF (2005) Reagent-free Nazarov cyclisations. Chem Commun: 660-62Google Scholar
  484. 484.
    Yin W, Ma Y and Xu J et al (2006). Microwave-assisted one-pot synthesis of 1-indanones from arenes and α,β-unsaturated acyl chlorides. J Org Chem 71: 4312–4315 PubMedCrossRefGoogle Scholar
  485. 485.
    Närhi K, Franzén J and Bäckvall J-E (2006). An unexpectedly mild thermal Alder-ene-type cyclization of enallenes. J Org Chem 71: 2914–2917 PubMedCrossRefGoogle Scholar
  486. 486.
    Dieltiens N and Stevens CV (2007). Metal-free entry to phosphonylated isoindoles by a cascade of 5-exo-dig cyclization, a [1,3]-alkyl shift and aromatization under microwave heating. Org Lett 9: 465–468 PubMedCrossRefGoogle Scholar
  487. 487.
    Csutorás C, Berényi S and Neumeyer JL (2008). Microwave- promoted acid-catalyzed rearrangement of morphinans—a high-yield synthesis of R(-)-apomorphine. Synth Commun: 38: 866–872 CrossRefGoogle Scholar
  488. 488.
    Frankowski KJ, Hirt EE and Zeng Y et al (2007). Synthesis of N-alkyl-octahydroisoquinolin-1- one-8-carboxamide libraries using a tandem Diels–Alder/acylation sequence. J Comb Chem 9: 1188–1192 PubMedCrossRefGoogle Scholar
  489. 489.
    Hughes RA, Thompson SP, Alcaraz L, Moody CJ (2004) Total synthesis of the thiopeptide amythiamicin D. Chem Commun: 946-48Google Scholar
  490. 490.
    Cook SP, Polara A and Danishefsky SJ (2006). The total synthesis of (±)-11-O-debenzoyltashironin. J Am Chem Soc 128: 16440–16441 PubMedCrossRefGoogle Scholar
  491. 491.
    Delgado JL, de la Cruz P, Langa F et al (2004) Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels–Alder cycloaddition. Chem Commun: 1734-735Google Scholar
  492. 492.
    Li J and Grennberg H (2006). Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes. Chem Eur J 12: 3869–3875 CrossRefGoogle Scholar
  493. 493.
    Brunetti FG, Herrero MA and Munoz JM et al (2007). Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129: 14580–14581 PubMedCrossRefGoogle Scholar
  494. 494.
    Fuentes A, Martínez-Palou R and Jiménez-Vázquez HA et al (2005). Diels–Alder reactions of 2-oxazolidinone dienes in polar solvents using catalysis or non-conventional energy sources. Monatsh Chem 136: 177–192 CrossRefGoogle Scholar
  495. 495.
    Pinto DCGA, Silva AMS, Brito CM et al (2005) Reactivity of 3-styrylchromones as dienes in Diels–Alder reactions under microwave irradiation: a new synthesis of xanthones. Eur J Org Chem: 2973-986Google Scholar
  496. 496.
    Mance AD and Jakopčić K (2005). Microwave assisted IMDAF reaction: microwave irradiation applied with success to cycloaddition reaction of N-propargyl-N-p-tolyl-N-2-furfurylamines. Mol Divers 9: 229–231 PubMedCrossRefGoogle Scholar
  497. 497.
    Wu J, Yu H and Wang Y et al (2007). Unexpected epimerization and stereochemistry revision of IMDA adducts from sorbate-related 1,3,8-nonatrienes. Tetrahedron Lett 48: 6543–6547 CrossRefGoogle Scholar
  498. 498.
    Panunzio M, Bandini E, D’Aurizio A et al (2007) EuFOD-catalyzed hetero-Diels-Alder (HDA) reaction under microwave heating. Synthesis: 2060-062Google Scholar
  499. 499.
    Xing X, Wu J and Dai WM (2006). Acid-mediated three-component aza-Diels-Alder reactions of 2-aminophenols under controlled microwave heating for synthesis of highly functionalized tetrahydroquinolines. Part 9: chemistry of aminophenols. Tetrahedron 62: 11200–11206 CrossRefGoogle Scholar
  500. 500.
    Wu J, Sun L and Dai WM (2006). Microwave-assisted tandem Wittig-intramolecular Diels-Alder cycloaddition. Product distribution and stereochemical assignment. Tetrahedron 62: 8360–8372 CrossRefGoogle Scholar
  501. 501.
    Jiménez-Alonso S, Estévez-Braun A and Ravelo ÁG et al (2007). Double domino Knoevenagel hetero Diels–Alder strategy towards bis-pyrano-1,4-benzoquinones. Tetrahedron 63: 3066–3074 CrossRefGoogle Scholar
  502. 502.
    Kranjc K and Kočevar M (2006). Intensification of a reaction by addition of a minor amount of solvent: Diels–Alder reation of 2H-pyran-2-ones with alkynes. Collect Czech Chem Commun 71: 667–678 CrossRefGoogle Scholar
  503. 503.
    Sarotti AM, Joullie MM and Spanevello RA et al (2006). Microwave-assisted regioselective cycloaddition reactions between 9-substituted anthracenes and levoglucosenone. Org Lett 8: 5561–5564 PubMedCrossRefGoogle Scholar
  504. 504.
    Gudipati IR, Sadasivam DV and Birney DM (2008). Microwave generation and trapping of acetylketene. Green Chem 10: 275–277 CrossRefGoogle Scholar
  505. 505.
    Saaby S, Baxendale IR and Ley SV (2005). Non-metal-catalysed intramolecular alkyne cyclotrimerization reactions promoted by focussed microwave heating in batch and flow modes. Org Biomol Chem 3: 3365–3368 PubMedCrossRefGoogle Scholar
  506. 506.
    Young DD and Deiters A (2007). A general approach to chemo- and regioselective cyclotrimerization reactions. Angew Chem Int Ed 46: 5187–5190 CrossRefGoogle Scholar
  507. 507.
    Young DD, Sripada L and Deiters A (2007). Microwave-assisted solid-supported alkyne cyclotrimerization reactions for combinatorial chemistry. J Comb Chem 9: 735–738 PubMedCrossRefGoogle Scholar
  508. 508.
    Sripada L, Teske JA and Deiters A (2008). Phenanthridine synthesis via [2+2+2] cyclotrimerization reactions. Org Biomol Chem 6: 263–265 PubMedCrossRefGoogle Scholar
  509. 509.
    McIver A, Young DD, Deiters A (2008) A general approach to triphenylenes and azatriphenylenes: total synthesis of dehydrotylophorine and tylophorine. Chem Commun: 4750-752Google Scholar
  510. 510.
    Teske JA and Deiters A (2008). Microwave-mediated nickel-catalyzed cyclotrimerization reactions: total synthesis of illudinine. J Org Chem 73: 342–345 PubMedCrossRefGoogle Scholar
  511. 511.
    Shanmugasundaram M, Aguirre AL and Leyva M et al (2007). Microwave-assisted iridium-catalyzed [2+2+2] cycloaddition of resin-bound dipropargylamine with alkynes. Tetrahedron Lett 48: 7698–7701 CrossRefGoogle Scholar
  512. 512.
    Novák P, Cíhalová S and Otmar M et al (2008). Co- and homocyclotrimerization reactions of protected 1-alkynyl-2-deoxyribofuranose. Synthesis of C-nucleosides, C-di- and C-trisaccharide analogues. Tetrahedron 64: 5200–5207 CrossRefGoogle Scholar
  513. 513.
    Park KH, Choi SY, Kim SY et al (2006) Selectivity in cobalt carbonyl mediated cycloaddition of dienynes. Synlett: 527-32Google Scholar
  514. 514.
    Hrdina R, Kadlčíková A and Valterová I et al (2006). An easy route to atropoisomeric bipyridine N,N′-dioxides and allylation of aldehydes. Tetrahedron Asymmetry 17: 3185–3191 CrossRefGoogle Scholar
  515. 515.
    Zhou Y, Porco JA and Snyder JK (2007). Synthesis of 5,6,7,8-tetrahydro-1,6-naphthyridines and related heterocycles by cobalt- catalyzed [2+2+2] cyclizations. Org Lett 9: 393–396 PubMedCrossRefGoogle Scholar
  516. 516.
    Arrieta A, Otaegui D and Zubia A et al (2007). Solvent-free thermal and microwave-assisted [3+2] cycloadditions between stabilized azomethine ylides and nitrostyrenes. An experimental and theoretical study. J Org Chem 72: 4313–4322 PubMedCrossRefGoogle Scholar
  517. 517.
    Bergner I and Opatz T (2007). Modular one-pot synthesis of tetrasubstituted pyrroles from α-(alkylideneamino)nitriles. J Org Chem 72: 7083–7090 PubMedCrossRefGoogle Scholar
  518. 518.
    Meng L, Fettinger JC and Kurth MJ (2007). Intramolecular cycloaddition of azomethine ylides in the preparation of pyrrolidino[2′3′3,4]pyrrolidino[1,2-a] benzimidazoles. Org Lett 9: 5055–5058 PubMedCrossRefGoogle Scholar
  519. 519.
    Hong BC, Liu KL and Tsai CW et al (2008). Proline-mediated dimerization of cinnamaldehydes via 1,3-dipolar cycloaddition reaction with azomethine ylides. A rapid access to highly functionalized hexahydro-1H-pyrrolizine. Tetrahedron Lett 49: 5480–5483 CrossRefGoogle Scholar
  520. 520.
    Beryozkina T, Appukkuttan P and Mont N et al (2006). Microwave-enhanced synthesis of new (-)-steganacin and (-)-steganone aza analogues. Org Lett 8: 487–490 PubMedCrossRefGoogle Scholar
  521. 521.
    Katritzky AR, Singh SK, Meher NK et al (2006) Triazole-oligomers by 1,3-dipolar cycloaddition. ARKIVOC V:43-2Google Scholar
  522. 522.
    Perissutti E, Frecentese F and Fiorino F et al (2007). Microwave solvent free regioselective 1,3 dipolar cycloaddition in the sythesis of 1,4 substituted [1,2,3]-triazoles as amide bond isosteres. J Heterocycl Chem 44: 815–819 CrossRefGoogle Scholar
  523. 523.
    Morrison AJ, Paton RM and Sharp RD (2005). Microwave-assisted generation and reactions of nitrile sulfides. Synth Commun 35: 807–813 CrossRefGoogle Scholar
  524. 524.
    McMillan KG, Tackett MN and Dawson A et al (2006). Synthesis, structure and reactivity of 5-pyranosyl-1,3,4-oxathiazol-2-ones. Carbohydr Res 341: 41–48 PubMedCrossRefGoogle Scholar
  525. 525.
    Brummond KM and Chen D (2005). Microwave-assisted intramolecular [2+2] allenic cycloaddition reaction for the rapid assembly of bicyclo[4.2.0]octa-1,6-dienes and bicyclo[5.2.0]nona-1,7-dienes. Org Lett 7: 3473–3475 PubMedCrossRefGoogle Scholar
  526. 526.
    Piras L, Genesio E, Ghiron C, Taddei M (2008) Microwave-assisted hydrogenation of pyridines. Synlett: 1125-128Google Scholar
  527. 527.
    Vanier G (2007) Simple and efficient microwave-assisted hydrogenation reactions at moderate temperature and pressure. Synlett: 131-35Google Scholar
  528. 528.
    Toom L, Grennberg H, Gogoll A (2006) Microwave-assisted Raney nickel reduction of bispidinone thioketals to N,N′-dialkylbispidines. Synthesis: 2064-068Google Scholar
  529. 529.
    Breschi MC, Calderone V and Martelli A et al (2006). New benzopyran-based openers of the mitochondrial ATP-sensitive potassium channel with potent anti-ischemic properties. J Med Chem 49: 7600–7602 PubMedCrossRefGoogle Scholar
  530. 530.
    Olivares-Romero JL and Juaristi E (2008). Synthesis of three novel chiral diamines derived from (S)-proline and their evaluation as precursors of diazaborolidines for the catalytic borane-mediated enantioselective reduction of prochiral ketones. Tetrahedron 64: 9992–9998 CrossRefGoogle Scholar
  531. 531.
    Spencer J, Anjum N, Patel H et al (2007) Molybdenum hexacarbonyl and DBU reduction of nitro compounds under microwave irradiation. Synlett: 2557-558Google Scholar
  532. 532.
    Wu X, Mahalingam AK and Alterman M (2005). Rapid Mo(CO)6 catalysed one-pot deoxygenation of heterocyclic halo-benzyl alcohols with Lawesson’s reagent. Tetrahedron Lett 46: 1501–1504 CrossRefGoogle Scholar
  533. 533.
    Hu Y, Green N and Gavrin LK et al (2006). Inhibition of Tpl2 kinase and TNFα production with quinoline-3-carbonitriles for the treatment of rheumatoid arthritis. Bioorg Med Chem Lett 16: 6067–6072 PubMedCrossRefGoogle Scholar
  534. 534.
    Ekström J, Wettergren J and Adolfsson H (2007). A simple and efficient catalytic method for the reduction of ketones. Adv Synth Catal 349: 1609–1613 CrossRefGoogle Scholar
  535. 535.
    Leijondahl K, Fransson ABL and Bäckvall J-E (2006). Efficient ruthenium-catalyzed transfer hydrogenation/hydrogenation of 1,3-cycloalkanediones to 1,3-cycloalkanediols using microwave heating. J Org Chem 71: 8622–8625 PubMedCrossRefGoogle Scholar
  536. 536.
    Lipshutz BH and Frieman BA (2005). CuH in a bottle: a convenient reagent for asymmetric hydrosilylations. Angew Chem Int Ed 44: 6345–6348 CrossRefGoogle Scholar
  537. 537.
    Baker BA, Boskovic ZV and Lipshutz BH (2008). (BDP)CuH: a “hot” Stryker’s reagent for use in achiral conjugate reductions. Org Lett 10: 289–292 PubMedCrossRefGoogle Scholar
  538. 538.
    Gustafsson T, Hedenström M and Kihlberg J (2006). Synthesis of a C-glycoside analogue of β-D-galactosyl hydroxylysine and incorporation in a glycopeptide from type II collagen. J Org Chem 71: 1911–1919 PubMedCrossRefGoogle Scholar
  539. 539.
    Rakowitz D, Maccari R and Ottanà R et al (2006). In vitro aldose reductase inhibitory activity of 5-benzyl-2,4-thiazolidinediones. Bioorg Med Chem 14: 567–574 PubMedCrossRefGoogle Scholar
  540. 540.
    Bartoli G, Di Antonio G and Giovannini R et al (2008). Efficient transformation of azides to primary amines using the mild and easily accessible CeCl3.7H2O/NaI system. J Org Chem 73: 1919–1924 PubMedCrossRefGoogle Scholar
  541. 541.
    Li J, Ye D and Liu H et al (2008). Microwave-assisted dehalogenation of α-haloketones by zinc and ammonium chloride in alcohol. Synth Commun 38: 567–575 CrossRefGoogle Scholar
  542. 542.
    Ghassemi S and Fuchs K (2005). Alternative method of Boc-removal from sulfamide using silica-phenyl sulfonic acid in conjunction with microwave heating. Mol Divers 9: 295–299 PubMedCrossRefGoogle Scholar
  543. 543.
    Larsen K, Worm-Leonhard K and Olsen P et al (2005). Reconsidering glycosylations at high temperature: precise microwave heating. Org Biomol Chem 3: 3966–3970 PubMedCrossRefGoogle Scholar
  544. 544.
    Du W, Kulkarni SS, Gervay-Hague J (2007) Efficient, one-pot syntheses of biologically active α-linked glycolipids. Chem Commun: 2336-338Google Scholar
  545. 545.
    Bookser BC and Raffaele NB (2007). High-throughput five minute microwave accelerated glycosylation approach to the synthesis of nucleoside libraries. J Org Chem 72: 173–179 PubMedCrossRefGoogle Scholar
  546. 546.
    Lohman GJS and Seeberger PH (2004). A stereochemical surprise at the late stage of the synthesis of fully N-differentiated heparin oligosaccharides containing amino, acetamido and N-sulfonate groups. J Org Chem 69: 4081–4093 PubMedCrossRefGoogle Scholar
  547. 547.
    Bejugam M and Flitsch SL (2004). An efficient synthetic route to glycoamino acid building blocks for glycopeptide synthesis. Org Lett 6: 4001–4004 PubMedCrossRefGoogle Scholar
  548. 548.
    Ko KS, Zea CJ and Pohl NL (2004). Surprising bacterial nucleotidyltransferase selectivity in the conversion of carbaglucose-1- phosphate. J Am Chem Soc 126: 13188–13189 PubMedCrossRefGoogle Scholar
  549. 549.
    Dondoni A, Massi A and Aldhoun M (2007). Hantzsch-type three-component approach to a new family of carbon-linked glycosyl amino acids. Synthesis of C-glycosylmethyl pyridylalanines. J Org Chem 72: 7677–7687 PubMedCrossRefGoogle Scholar
  550. 550.
    Li X and Danishefsky SJ (2008). New chemistry with old functional groups: on the reaction of isonitriles with carboxylic acids—a route to various amide types. J Am Chem Soc 130: 5446–5448 PubMedCrossRefGoogle Scholar
  551. 551.
    Seibel J, Hillringhaus L and Moraru R (2005). Microwave-assisted glycosylation for the synthesis of glycopeptides. Carbohydr Res 340: 507–511 PubMedCrossRefGoogle Scholar
  552. 552.
    Rat S, Mathiron D and Michaud P et al (2007). Efficient glycosydation and/or esterification of D-glucuronic acid and its 6,1-lactone under solvent-free microwave irradiation. Tetrahedron 63: 12424–12428 CrossRefGoogle Scholar
  553. 553.
    Lin HC, Chang CC and Chen JY et al (2005). Stereoselective glycosylation of exo-glycals by microwave-assisted Ferrier rearrangement. Tetrahedron Asymmetry 16: 297–301 CrossRefGoogle Scholar
  554. 554.
    Bornaghi LF and Poulsen SA (2005). Microwave-accelerated Fischer glycosylation. Tetrahedron Lett 46: 3485–3488 CrossRefGoogle Scholar
  555. 555.
    Christensen H, Christiansen MS and Petersen J et al (2008). Direct formation of β-glycosides of N-acetyl glycosamines mediated by rare earth metal triflates. Org Biomol Chem 6: 3276–3283 PubMedCrossRefGoogle Scholar
  556. 556.
    Yoshimura Y, Shimizu H and Hinou H et al (2005). A novel glycosylation concept; microwave-assisted acetal-exchange type glycosylations from methyl glycosides as donors. Tetrahedron Lett 46: 4701–4705 CrossRefGoogle Scholar
  557. 557.
    Follmann M, Graul F, Schäfer T et al (2005) Petasis boronic Mannich reactions of electron-poor aromatic amines under microwave conditions. Synlett: 1009-011Google Scholar
  558. 558.
    Hübner S, Neumann H, Michalik D et al (2007) Three-component reactions of α- and β-bromo aldehydes with amides and dienophiles—an easy way to versatile 1-amido-2-cyclohexenes. Synlett: 1085-090Google Scholar
  559. 559.
    Strübing D, Neumann H and Jacobi von Wangelin A et al (2006). An easy and general protocol for multicomponent coupling reactions of aldehydes, amides, and dienophiles. Tetrahedron 62: 10962–10967 CrossRefGoogle Scholar
  560. 560.
    Schwerkoske J, Masquelin T, Perun T and Hulme C (2005). New multi-component reaction accessing 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett 46: 8355–8357 CrossRefGoogle Scholar
  561. 561.
    Masquelin T, Bui H and Brickley B et al (2006). Sequential Ugi/Strecker reactions via microwave assisted organic synthesis: novel 3-center-4-component and 3-center-5-component multi-component reactions. Tetrahedron Lett 47: 2989–2991 CrossRefGoogle Scholar
  562. 562.
    DiMauro EF and Kennedy JM (2007). Rapid synthesis of 3-amino-imidazopyridines by a microwave-assisted four-component coupling in one pot. J Org Chem 72: 1013–1016 PubMedCrossRefGoogle Scholar
  563. 563.
    Wu J (2006). General microwave-assisted protocols for the expedient synthesis of furo[3,2-c]chromen-4-ones. Chem Lett 35: 118–119 CrossRefGoogle Scholar
  564. 564.
    Xing X, Wu J, Luo J, Dai WM (2006) C–N bond-linked conjugates of dibenz[b,f][1,4]oxazepines with 2-oxindole. Synlett: 2099-103Google Scholar
  565. 565.
    Oble J, El Kaïm L, Gizzi M and Grimaud L (2007). Ugi-Smiles access to quinoxaline derivatives. Heterocyles 73: 503–517 CrossRefGoogle Scholar
  566. 566.
    Bohn Rhoden CR, Westermann B, Wessjohann L (2008) One-pot multicomponent synthesis of N-substituted tryptophan-derived diketopiperazines. Synthesis: 2077-082Google Scholar
  567. 567.
    De Silva RA, Santra S and Andreana PR (2008). A tandem one-pot, microwave-assisted synthesis of regiochemically differentiated 1,2,4,5-tetrahydro-1,4-benzodiazepin-3-ones. Org Lett 10: 4541–4544 PubMedCrossRefGoogle Scholar
  568. 568.
    Santra S and Andreana PR (2007). A one-pot, microwave-influenced synthesis of diverse small molecules by multicomponent reaction cascades. Org Lett 9: 5035–5038 PubMedCrossRefGoogle Scholar
  569. 569.
    Gududuru V, Nguyen V, Dalton JT, Miller DD (2004) Efficient microwave enhanced synthesis of 4-thiazolidinon. Synlett: 2357-358Google Scholar
  570. 570.
    Risitano F, Grassi G, Foti F, Moraci S (2005) A novel efficient three-component one-pot synthesis of 1,3-diazabicyclo [3.1.0]hex-3-ene system under microwave irradiation. Synlett: 1633-635Google Scholar
  571. 571.
    Tu S, Zhu X and Zhang J et al (2006). New potential biologically active compounds: design and an efficient synthesis of N-substituted 4-aryl-4,6,7,8-tetrahydroquinoline-2,5(1H,3H)-diones under microwave irradiation. Bioorg Med Chem Lett 16: 2925–2928 PubMedCrossRefGoogle Scholar
  572. 572.
    Tu S, Zhu X and Shi F et al (2007). An efficient microwave-assisted synthesis of 3,5-unsubstituted 4-substituted-6-aryl-3,4-dihydropyridin-2(1H)-ones derivatives. J Heterocycl Chem 44: 837–844 CrossRefGoogle Scholar
  573. 573.
    Tu SJ, Jiang B and Jia RH et al (2006). An efficient one-pot, three-component synthesis of indeno[1,2-b]quinoline-9,11(6H,10H)-dione, acridine-1,8(2H,5H)-dione and quinoline-3-carbonitrile derivatives from enaminones. Org Biomol Chem 4: 3664–3668 PubMedCrossRefGoogle Scholar
  574. 574.
    Tu SJ, Jiang B and Zhang JY et al (2006). Efficient and direct synthesis of poly-substituted indeno[1,2-b]quinolines assisted by p-toluene sulfonic acid using high-temperature water and microwave heating via one-pot, three-component reaction. Org Biomol Chem 4: 3980–3985 PubMedCrossRefGoogle Scholar
  575. 575.
    Tu S, Zhang Y and Jia R et al (2006). A multi-component reaction for the synthesis of N-substituted furo[3,4-b]quinoline derivatives under microwave irradiation. Tetrahedron Lett 47: 6521–6525 CrossRefGoogle Scholar
  576. 576.
    Tu S, Li C and Li G et al (2007). Microwave-assisted combinatorial synthesis of polysubstituent imidazo[1,2-a]quinoline, pyrimido[1,2-a]quinoline and quinolino[1,2-a]quinazoline derivatives. J Comb Chem 9: 1144–1148 PubMedCrossRefGoogle Scholar
  577. 577.
    Tu S, Jiang B and Jiang H et al (2007). A novel three-component reaction for the synthesis of new 4-azafluorenone derivatives. Tetrahedron 63: 5406–5414 CrossRefGoogle Scholar
  578. 578.
    Tu SJ, Hong YZ, Jiang JB et al (2007) A simple synthesis of furo [3′4′5,6] pyrido [2,3-d] pyrimidine derivatives through multicomponent reactions in water. Eur J Org Chem: 1522-528Google Scholar
  579. 579.
    Tu S, Jiang B and Zhang Y et al et al (2007). An efficient and chemoselective synthesis of N-substituted 2-aminopyridines via a microwave-assisted multicomponent reaction. Org Biomol Chem 5: 355–359 PubMedCrossRefGoogle Scholar
  580. 580.
    Bremner WS and Organ MG (2006). Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 9: 14–16 CrossRefGoogle Scholar
  581. 581.
    Chebanov VA, Sakhno YI and Desenko SM et al (2007). Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multicomponent approaches to pyrazolopyridines and related products. Tetrahedron 63: 1229–1242 CrossRefGoogle Scholar
  582. 582.
    Chebanov VA, Muravyova EA and Desenko SM et al (2006). Microwave-assisted three-component synthesis of 7-aryl-2-alkylthio-4, 7-dihydro-1,2,4-triazolo [1,5-a]-pyrimidine-6-carboxamides and their selective reduction. J Comb Chem 8: 427–434 PubMedCrossRefGoogle Scholar
  583. 583.
    Zhu SL, Ji SJ and Zhao K et al (2008). Multicomponent reactions for the synthesis of new 3′ indolyl substituted heterocycles under microwave irradiation. Tetrahedron Lett 49: 2578–2582 CrossRefGoogle Scholar
  584. 584.
    Ostras KS, Gorobets NY, Desenko SM and Musatov VI (2006). An easy access to 2-amino-5,6-dihydro-3H-pyrimidin-4-one building blocks: the reaction under conventional and microwave conditions. Mol Divers 10: 483–489 PubMedCrossRefGoogle Scholar
  585. 585.
    Yadav LDS, Awasthi C, Rai VK and Rai A (2007). Biorenewable and mercaptoacetylating building blocks in the Biginelli reaction: synthesis of thiosugar-annulated dihydropyrimidines. Tetrahedron Lett 48: 4899–4902 CrossRefGoogle Scholar
  586. 586.
    Yan CG, Cai XM and Wang QF et al (2007). Microwave-assisted four-component, one-pot condensation reaction: an efficient synthesis of annulated pyridines. Org Biomol Chem 5: 945–951 PubMedCrossRefGoogle Scholar
  587. 587.
    Nguyen RV, Li CJ (2008) Efficient synthesis of dihydrobenzofurans via a multicomponent coupling of salicylaldehydes, amines, and alkynes. Synlett: 1897-901Google Scholar
  588. 588.
    Xiao F, Chen Y and Liu Y et al (2008). Sequential catalytic process: synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron 64: 2755–2761 CrossRefGoogle Scholar
  589. 589.
    Ohta Y, Chiba H and Oishi S et al (2008). Concise synthesis of indole-fused 1,4-diazepines through copper(I)-catalyzed domino three-component coupling-cyclization-N-arylation under microwave irradiation. Org Lett 10: 3535–3538 PubMedCrossRefGoogle Scholar
  590. 590.
    Guo K, Thompson MJ and Reddy TRK et al (2007). Mechanistic studies leading to a new procedure for rapid, microwave assisted generation of pyridine-3,5-dicarbonitrile libraries. Tetrahedron 63: 5300–5311 CrossRefGoogle Scholar
  591. 591.
    Li M, Zuo Z and Wen L et al (2008). Microwave-assisted combinatorial synthesis of hexa-substituted 1,4-dihydropyridines scaffolds using one-pot two-step multicomponent reaction followed by a S-alkylation. J Comb Chem 10: 436–441 PubMedCrossRefGoogle Scholar
  592. 592.
    Ravikumar Naik TR and Bhojya Naik HS (2008). An efficient Bi(NO3)3 ·  5H2O catalyzed multi component one-pot synthesis of novel naphthyridines. Mol Divers 12: 139–142 PubMedCrossRefGoogle Scholar
  593. 593.
    Zanobini A, Brandi A, de Meijere A (2006) A new three-component cascade reaction to yield 3-spirocyclopropanated β-lactams. Eur J Org Chem: 1251-255Google Scholar
  594. 594.
    Ye P, Sargent K and Stewart E et al (2006). Novel and expeditious microwave-assisted three-component reactions for the synthesis of spiroimidazolin-4-ones. J Org Chem 71: 3137–3140 PubMedCrossRefGoogle Scholar
  595. 595.
    Yang S, Gao X-W and Diao C-L et al (2006). Synthesis and antifungal activity of novel chiral α-aminophosphonates containing fluorine moiety. Chin J Chem 24: 1581–1588 CrossRefGoogle Scholar
  596. 596.
    Régnier T, Berrée F and Lavastre O et al (2007). Solvent-free one-pot four-component synthesis of 2-aminomorpholines. Access to related diaminoalcohols. Green Chem 9: 125–126 CrossRefGoogle Scholar
  597. 597.
    Sridhar M, Rao RM and Baba NHK et al (2007). Microwave accelerated Gewald reaction: synthesis of 2-aminothiophenes. Tetrahedron Lett 48: 3171–3172 CrossRefGoogle Scholar
  598. 598.
    Zuo H, Li ZB and Ren FK et al (2008). Microwave-assisted one-pot synthesis of benzo[b][1,4]thiazin-3(4H)-ones via Smiles rearrangement. Tetrahedron 64: 9669–9674 CrossRefGoogle Scholar
  599. 599.
    Ollevier T, Li Z (2007) Bismuth triflate catalyzed allylation of aldehydes with allylstannane under microwave assistance. Eur J Org Chem: 5665-668Google Scholar
  600. 600.
    Doi T, Fuse S and Miyamoto S et al (2006). A formal total synthesis of taxol aided by an automated synthesizer. Chem Asian J 1: 370–383 PubMedCrossRefGoogle Scholar
  601. 601.
    Handlon A, Guo Y (2005) Lanthanide(III) triflate-catalyzed thermal- and microwave-assisted synthesis of benzyl ethers from benzyl alcohols. Synlett: 111-14Google Scholar
  602. 602.
    Lofberg C, Grigg R, Keep A et al (2006) Sequential one-pot bimetallic Ir(III)/Pd(0) catalysed mono-/bis-alkylation and spirocyclisation processes of 1,3-dimethylbarbituric acid and allenes. Chem Commun: 5000-002Google Scholar
  603. 603.
    Ranu BC, Banerjee S and Jana R (2007). Ionic liquid as catalyst and solvent: the remarkable effect of a basic ionic liquid, [bmIm]OH on Michael addition and alkylation of active methylene compounds. Tetrahedron 63: 776–782 CrossRefGoogle Scholar
  604. 604.
    Keglevich G, Majrik K and Vida L et al (2008). Microwave irradiation as a green alternative to phase transfer catalysis: solid–liquid phase alkylation of active methylene containing substrates under solvent-free conditions. Lett Org Chem 5: 224–228 CrossRefGoogle Scholar
  605. 605.
    Moloney M, Yaqoob M (2008) Microwave-enhanced α-functionalisation of tetramates. Synlett: 2107-110Google Scholar
  606. 606.
    Kainmuller EK, Olle EP, Bannwarth W (2006) Synthesis of a new pair of fluorescence resonance energy transfer donor and acceptor dyes and its use in a protease assay. Chem Commun: 5459-461Google Scholar
  607. 607.
    Manetti F, Este JA and Clotet-Codina I et al (2005). Parallel solution-phase and microwave-assisted synthesis of new S-DABO derivatives endowed with subnanomolar anti-HIV-1 activity. J Med Chem 48: 8000–8008 PubMedCrossRefGoogle Scholar
  608. 608.
    Mugnaini C, Alongi M and Togninelli A et al (2007). Dihydro-alkylthio-benzyl-oxopyrimidines as inhibitors of reverse transcriptase: synthesis and rationalization of the biological data on both wild-type enzyme and relevant clinical mutants. J Med Chem 50: 6580–6595 PubMedCrossRefGoogle Scholar
  609. 609.
    Bica K, Gmeiner G, Reichel C et al (2007) Microwave-assisted synthesis of camphor-derived chiral imidazolium ionic liquids and their application in diastereoselective Diels–Alder reaction. Synthesis: 1333-338Google Scholar
  610. 610.
    Bon RS, de Kanter FJJ and Lutz M et al (2007). Multicomponent synthesis of N-heterocyclic carbene complexes. Organometallics 26: 3639–3650 CrossRefGoogle Scholar
  611. 611.
    Takvorian AG and Combs AP (2004). Microwave-assisted organic synthesis using minivials to optimize and expedite the synthesis of diverse purine libraries. J Comb Chem 6: 171–174 PubMedCrossRefGoogle Scholar
  612. 612.
    Huang H, Liu H, Chen K and Jiang H (2007). Microwave-assisted rapid synthesis of 2,6,9-substituted purines. J Comb Chem 9: 197–199 PubMedCrossRefGoogle Scholar
  613. 613.
    Baqi Y and Müller CE (2007). Catalyst-free microwave-assisted amination of 2-chloro-5-nitrobenzoic acid. J Org Chem 72: 5908–5911 PubMedCrossRefGoogle Scholar
  614. 614.
    Fang WP, Cheng YT and Cheng YR et al (2005). Synthesis of substituted uracils by the reactions of halouracils with selenium, sulfur, oxygen and nitrogen nucleophiles under focused microwave irradiation. Tetrahedron 61: 3107–3113 CrossRefGoogle Scholar
  615. 615.
    Sandford G, Slater R and Yufit DS et al (2005). Tetrahydropyrido[3,4-b]pyrazine scaffolds from pentafluoropyridine. J Org Chem 70: 7208–7216 PubMedCrossRefGoogle Scholar
  616. 616.
    Samaroo D, Soll CE and Todaro LJ et al (2006). Efficient microwave-assisted synthesis of amine-substituted tetrakis(pentafluorophenyl)porphyrin. Org Lett 8: 4985–4988 PubMedCrossRefGoogle Scholar
  617. 617.
    Larsson A, Spjut S, Kihlberg J et al (2005) An improved procedure for the synthesis of enaminones—dimer building blocks in β-strand mimetics. Synthesis: 2590-596Google Scholar
  618. 618.
    Cao P, Qu J and Burton G et al (2008). Facile synthesis of 6-aryl 5-N-substituted pyridazinones: microwave-assisted Suzuki-Miyaura cross coupling of 6-chloropyridazinones. J Org Chem 73: 7204–7208 PubMedCrossRefGoogle Scholar
  619. 619.
    Gemma S, Kukreja G and Fattorusso C et al (2006). Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains. Bioorg Med Chem Lett 16: 5384–5388 PubMedCrossRefGoogle Scholar
  620. 620.
    Qu GR, Zhao L and Wang DC et al (2008). Microwave-promoted efficient synthesis of C6-cyclo secondary amine substituted purine analogues in neat water. Green Chem 10: 287–289 CrossRefGoogle Scholar
  621. 621.
    Caldwell JJ, Davies TG and Donald A et al (2008). Identification of 4-(4-aminopiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidines as selective inhibitors of protein kinase B through fragment elaboration. J Med Chem 51: 2147–2157 PubMedCrossRefGoogle Scholar
  622. 622.
    St. Jean DJ, Poon SF and Schwarzbach JL (2007). A tandem cross-coupling/SNAr approach to functionalized carbazoles. Org Lett 9: 4893–4896 PubMedCrossRefGoogle Scholar
  623. 623.
    Schirok H (2006). Microwave-assisted flexible synthesis of 7-azaindoles. J Org Chem 71: 5538–5545 PubMedCrossRefGoogle Scholar
  624. 624.
    Rodríguez-Escrich S, Popa D and Jimeno C et al (2005). (S)-2-[(R)-Fluoro(phenyl)methyl]oxirane: a general reagent for determining the ee of α-chiral amines. Org Lett 7: 3829–3832 PubMedCrossRefGoogle Scholar
  625. 625.
    Cattoen X and Pericas MA (2007). Suzuki cross-coupling on enantiomerically pure epoxides: efficient synthesis of diverse, modular amino alcohols from single enantiopure precursors. J Org Chem 72: 3253–3258 PubMedCrossRefGoogle Scholar
  626. 626.
    Robin A, Brown F and Bahamontes-Rosa N et al (2007). Microwave-assisted ring opening of epoxides: a general route to the synthesis of 1-aminopropan-2-ols with anti malaria parasite activities. J Med Chem 50: 4243–4249 PubMedCrossRefGoogle Scholar
  627. 627.
    Desai H, D’Souza B, Foether D et al (2007) Regioselectivity in a highly efficient, microwave-assisted epoxide aminolysis. Synthesis: 902-10Google Scholar
  628. 628.
    Pironti V and Colonna S (2005). Microwave-promoted synthesis of β-hydroxy sulfides and β-hydroxy sulfoxides in water. Green Chem 7: 43–45 CrossRefGoogle Scholar
  629. 629.
    Xue F and Seto CT (2006). Structure-activity studies of cyclic ketone inhibitors of the serine protease plasmin: design, synthesis and biological activity. Bioorg Med Chem 14: 8467–8487 PubMedCrossRefGoogle Scholar
  630. 630.
    Grundt P, Prevatt KM and Cao J et al (2007). Heterocyclic analogues of N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: potential substance abuse therapeutic agents. J Med Chem 50: 4135–4146 PubMedCrossRefGoogle Scholar
  631. 631.
    Johansen M, Leduc A, Kerr M (2007) Concise biomimetic total syntheses of both antipodes of balasubramide. Synlett: 2593-595Google Scholar
  632. 632.
    Pei Y, Brule E and Moberg C (2006). Modular multidentate phosphine ligands: application to palladium-catalyzed allylic alkylations. Org Biomol Chem 4: 544–550 PubMedCrossRefGoogle Scholar
  633. 633.
    Kurz T and Widyan K (2005). Microwave-assisted conversion of N-substituted oxazolidin-2,4-diones into α-hydroxyamides. Tetrahedron 61: 7247–7251 CrossRefGoogle Scholar
  634. 634.
    Qin HL, Lowe JT and Panek JS (2007). Mild reductive opening of aryl pyranosides promoted by scandium(III) triflate. J Am Chem Soc 129: 38–39 PubMedCrossRefGoogle Scholar
  635. 635.
    Diaz-Sanchez BR, Iglesias-Arteaga MA and Melgar-Fernandez R et al (2007). Synthesis of 2-substituted-5-halo-2,3-dihydro-4 (H)-pyrimidin-4-ones and their derivatization utilizing the Sonogashira coupling reaction in the enantioselective synthesis of α-substituted β-amino acids. J Org Chem 72: 4822–4825 PubMedCrossRefGoogle Scholar
  636. 636.
    Zare A, Hasaninejad A, Khalafi-Nezhad A et al (2007) A green solventless protocol for Michael addition of phthalimide and saccharin to acrylic acid esters in the presence of zinc oxide as a heterogeneous and reusable catalyst. ARKIVOC I:58-9Google Scholar
  637. 637.
    Vasudevan A, Verzal MK (2003) Neutral, metal-free hydration of alkynes using microwave irradiation in superheated water. Synlett: 631-34Google Scholar
  638. 638.
    Wipf P, Janjic J and Stephenson JCR (2004). Microwave-assisted synthesis of allylic amines: considerable rate acceleration in the hydrozirconation–transmetalation–aldimine addition sequence. Org Biomol Chem 2: 443–445 PubMedCrossRefGoogle Scholar
  639. 639.
    Stevens BD, Bungard CJ and Nelson SG (2006). Strategies for expanding structural diversity available from olefin isomerization-Claisen rearrangement reactions. J Org Chem 71: 6397–6402 PubMedCrossRefGoogle Scholar
  640. 640.
    Kazmaier U, Wesquet A (2005) Stannylated allylsulfones as versatile new building blocks. Synlett: 1271-274Google Scholar
  641. 641.
    Wesquet A, Dörrenbächer S, Kazmaier U (2006) Improved protocols for the molybdenum-catalyzed hydrostannation of alkynes. Synlett: 1105-109Google Scholar
  642. 642.
    Kazmaier U, Dörrenbächer S, Wesquet A et al (2007) Molybdenum-catalyzed synthesis of stannylated allylic alcohol derivatives and their synthetic applications. Synthesis: 320-26Google Scholar
  643. 643.
    Join B, Delacroix O, Gaumont AC (2005) Mild and simple preparation of ketophosphine-boranes through uncatalysed hydrophosphination of enones. Synlett: 1881-884Google Scholar
  644. 644.
    Crawley ML, McLaughlin E and Zhu W et al (2005). Concise approach to novel isothiazolidinone phosphotyrosine mimetics: microwave-assisted addition of bisulfite to activated olefins. Org Lett 7: 5067–5069 PubMedCrossRefGoogle Scholar
  645. 645.
    Herrera R, Jiménez-Vázquez HA, Tamariz J (2005) A new diastereoselective approach to the synthesis of α-hydroxy-β-amino acids based on the frame of captodative olefins. ARKIVOC VI:233-49Google Scholar
  646. 646.
    Bagley MC, Chapaneri K, Glover C, Merritt EA (2004) Simple microwave-assisted method for the synthesis of primary thioamides from nitriles. Synlett: 2615-617Google Scholar
  647. 647.
    Hammerland LG, Johansson M and Malmström J et al (2006). Structure-activity relationship of thiopyrimidines as mGluR5 antagonists. Bioorg Med Chem Lett 16: 2467–2469 PubMedCrossRefGoogle Scholar
  648. 648.
    Porcheddu A, Giacomelli G and Salaris M (2005). Microwave-assisted synthesis of isonitriles: a general simple methodology. J Org Chem 70: 2361–2363 PubMedCrossRefGoogle Scholar
  649. 649.
    Tanuwidjaja J, Peltier H, Lewis J et al (2007) One-pot microwave-promoted synthesis of nitriles from adehydes via tert-butanesulfinyl imines. Synthesis: 3385-389Google Scholar
  650. 650.
    Ju Y and Varma RS (2005). An efficient and simple aqueous N-heterocyclization of aniline derivatives: microwave-assisted synthesis of N-aryl azacycloalkanes. Org Lett 7: 2409–2411 PubMedCrossRefGoogle Scholar
  651. 651.
    Ju Y and Varma RS (2005). Microwave-assisted cyclocondensation of hydrazine derivatives with alkyl dihalides or ditosylates in aqueous media: syntheses of pyrazole, pyrazolidine and phthalazine derivatives. Tetrahedron Lett 46: 6011–6014 CrossRefGoogle Scholar
  652. 652.
    Ju Y, Kumar D and Varma RS (2006). Revisiting nucleophilic substitution reactions: microwave-assisted synthesis of azides, thiocyanates, and sulfones in an aqueous medium. J Org Chem 71: 6697–6700 PubMedCrossRefGoogle Scholar
  653. 653.
    Campiglia P, Aquino C and Bertamino A et al (2008). Novel route in the synthesis of ψ[CH2NH] amide bond surrogate. Tetrahedron Lett 49: 731–734 CrossRefGoogle Scholar
  654. 654.
    Xiao J-C and Shreeve JM (2005). Microwave-assisted rapid electrophilic fluorination of 1,3-dicarbonyl derivatives with SelectfluorcircledR. J Fluor Chem 126: 473–76 CrossRefGoogle Scholar
  655. 655.
    Nomoto T, Fukuhara T, Hara S (2006) Synthesis of (fluoroalkyl)amines by deoxyfluorination of amino alcohols. Synlett: 1744–746Google Scholar
  656. 656.
    Fujimoto Y, Iwata M and Imakita N et al (2007). Synthesis of immunoregulatory Helicobacter pylori lipopolysaccharide partial structures. Tetrahedron Lett 48: 6577–6581 CrossRefGoogle Scholar
  657. 657.
    Le HP and Müller CE (2006). Rapid microwave-assisted fluorination yielding novel 5′-deoxy-5′-fluorouridine derivatives. Bioorg Med Chem Lett 16: 6139–6142 PubMedCrossRefGoogle Scholar
  658. 658.
    Akiyama Y, Hiramatsu C and Fukuhara T et al (2006). Selective introduction of a fluorine atom into carbohydrates and a nucleoside by ring-opening fluorination reaction of epoxides. J Fluor Chem 127: 920–923 CrossRefGoogle Scholar
  659. 659.
    Curti C, Zanardi F and Battistini L et al (2006). Streamlined, asymmetric synthesis of 8,4′-oxyneolignans. J Org Chem 71: 8552–8558 PubMedCrossRefGoogle Scholar
  660. 660.
    Conejo-García A, Núñez MC and Marchal JA et al (2008). Regiospecific microwave-assisted synthesis and cytotoxic activity against human breast cancer cells of (RS)-6-substituted-7- or 9-(2,3-dihydro-5H-1,4-benzodioxepin-3-yl)-7H- or -9H-purines. Eur J Med Chem 43: 1742–1748 PubMedCrossRefGoogle Scholar
  661. 661.
    Morini G, Comini M and Rivara M et al (2006). Dibasic non-imidazole histamine H3 receptor antagonists with a rigid biphenyl scaffold. Bioorg Med Chem Lett 16: 4063–4067 PubMedCrossRefGoogle Scholar
  662. 662.
    Palmer AM, Grobbel B and Brehm C et al (2007). Preparation of tetrahydroimidazo[2,1-a]isoquinolines and their use as inhibitors of gastric acid secretion. Bioorg Med Chem 15: 7647–7660 PubMedCrossRefGoogle Scholar
  663. 663.
    Gold H, Larhed M, Nilsson P (2005) Microwave irradiation as a high-speed tool for activation of sluggish aryl chlorides in Grignard reactions. Synlett: 1596-600Google Scholar
  664. 664.
    Wunderlich S and Knochel P (2008). High temperature metalation of functionalized aromatics and heteroaromatics using (tmp)2Zn·2MgCl2·2LiCl and microwave irradiation. Org Lett 10: 4705–4707 PubMedCrossRefGoogle Scholar
  665. 665.
    Bentz E, Moloney MG and Westaway SM (2004). Palladium-catalysed α-arylation of esters and amides under microwave conditions. Tetrahedron Lett 45: 7395–7397 CrossRefGoogle Scholar
  666. 666.
    Bentz E, Moloney MG, Westaway SM (2007) Efficient reformatsky conjugate additions to alkylidene malonates and malonamides. Synlett: 733-36Google Scholar
  667. 667.
    Braga AL, Paixão Mw and Westermann B et al (2008). Acceleration of arylzinc formation and its enantioselective addition to aldehydes by microwave irradiation and aziridine-2-methanol catalysts. J Org Chem 73: 2879–2882 PubMedCrossRefGoogle Scholar
  668. 668.
    Szatmári I, Sillanpää R and Fülöp F (2008). Microwave-assisted, highly enantioselective addition of diethylzinc to aromatic aldehydes catalyzed by chiral aminonaphthols. Tetrahedron Asymmetry 19: 612–617 CrossRefGoogle Scholar
  669. 669.
    Genov M, Salas G and Espinet P (2008). Effect of microwave heating in the asymmetric addition of dimethylzinc to aldehydes. J Organomet Chem 693: 2017–2020 CrossRefGoogle Scholar
  670. 670.
    Cook MJ, Fleming DW and Gallagher T (2005). Microwave-assisted, regioselective, Petasis olefination of unsymmetrical oxalates. Formation of pyruvate-based enol ethers and enamines. Tetrahedron Lett 46: 297–300 CrossRefGoogle Scholar
  671. 671.
    Adriaenssens LV and Hartley RC (2007). β-Amino acids to piperidinones by Petasis methylenation and acid-induced cyclization. J Org Chem 72: 10287–10290 PubMedCrossRefGoogle Scholar
  672. 672.
    Su CR, Shen YC and Kuo PC et al (2006). Total synthesis and biological evaluation of viscolin, a 1,3-diphenylpropane as a novel potent anti-inflammatory agent. Bioorg Med Chem Lett 16: 6155–6160 PubMedCrossRefGoogle Scholar
  673. 673.
    Duvall JR, Wu F and Snider BB (2006). Structure reassignment and synthesis of jenamidines A1/A2, synthesis of (+)-NP25302, and formal synthesis of SB-311009 analogues. J Org Chem 71: 8579–8590 PubMedCrossRefGoogle Scholar
  674. 674.
    Morone M, Beverina L and Abbotto A et al (2006). Enhancement of two-photon absorption cross-section and singlet-oxygen generation in porphyrins upon β-functionalization with donor-acceptor substituents. Org Lett 8: 2719–2722 PubMedCrossRefGoogle Scholar
  675. 675.
    Stuhr-Hansen N (2005). Utilization of microwave heating in the McMurry reaction for facile coupling of aldehydes and ketones to give alkenes. Tetrahedron Lett 46: 5491–5494 CrossRefGoogle Scholar
  676. 676.
    Kangasmetsä JJ and Johnson T (2005). Microwave-accelerated methodology for the direct reductive amination of aldehydes. Org Lett 7: 5653–5655 PubMedCrossRefGoogle Scholar
  677. 677.
    Coats SJ, Schulz MJ and Carson JR et al (2004). Parallel methods for the preparation and SAR exploration of N-ethyl-4-[(8-alkyl-8-aza-bicyclo[3.2.1]oct-3-ylidene)-aryl-methyl]-benzamides, powerful mu and delta opioid agonists. Bioorg Med Chem Lett 14: 5493–5498 PubMedCrossRefGoogle Scholar
  678. 678.
    Santagada V, Frecentese F and Perissutti E et al (2005). Efficient microwave combinatorial parallel and nonparallel synthesis of N-alkylated glycine methyl esters as peptide building blocks. J Comb Chem 7: 618–621 PubMedCrossRefGoogle Scholar
  679. 679.
    Miyazawa A, Tanaka K, Sakakura T et al (2005) Microwave-assisted direct transformation of amines to ketones using water as an oxygen source. Chem Commun: 2104-106Google Scholar
  680. 680.
    Johansson MJ, Andersson KHO and Kann N (2008). Modular asymmetric synthesis of P-chirogenic β-amino phosphine boranes. J Org Chem 73: 4458–4463 PubMedCrossRefGoogle Scholar
  681. 681.
    Glynn D, Bernier D and Woodward S (2008). Microwave acceleration in DABAL-Me3-mediated amide formation. Tetrahedron Lett 49: 5687–5688 CrossRefGoogle Scholar
  682. 682.
    Gelens E, Smeets L and Sliedregt LAJM et al (2005). An atom efficient and solvent-free synthesis of structurally diverse amides using microwaves. Tetrahedron Lett 46: 3751–3754 CrossRefGoogle Scholar
  683. 683.
    Ferroud C, Godart M and Ung S et al (2008). Microwaves-assisted solvent-free synthesis of N-acetamides by amidation or aminolysis. Tetrahedron Lett 49: 3004–3008 CrossRefGoogle Scholar
  684. 684.
    Polshettiwar V and Varma RS (2008). NafioncircledR-catalyzed microwave-assisted Ritter reaction: an atom-economic solvent-free synthesis of amides. Tetrahedron Lett 49: 2661‱2664 CrossRefGoogle Scholar
  685. 685.
    Zhang L and Zhang JY (2005). Microwave-assisted synthesis of salicylamide via BCl 3 mediated coupling. J Comb Chem 7: 622-26 PubMedCrossRefGoogle Scholar
  686. 686.
    Martelanc M, Kranjc K and Polanc S et al (2005). An efficient microwave-assisted green transformation of fused succinic anhydrides into N-aminosuccinimide derivatives of bicyclo[2.2.2]octene in water. Green Chem 7: 737–741 CrossRefGoogle Scholar
  687. 687.
    Hren J, Kranjc K, Polanc S et al (2008) Aqueous versus neat reaction conditions: the microwave-assisted, selective conversion of a fused anhydride ring with amines in the presence of a keto group. Synthesis: 452-58Google Scholar
  688. 688.
    Massaro A, Mordini A, Reginato G et al (2007) Microwave-assisted transformation of esters into hydroxamic acids. Synthesis: 3201-204Google Scholar
  689. 689.
    Cianci J, Baell JB and Harvey AJ (2007). Microwave-assisted, zinc-mediated peptide coupling of N-benzyl-α,α-disubstituted amino acids. Tetrahedron Lett 48: 5973–5975 CrossRefGoogle Scholar
  690. 690.
    Katritzky AR, Todadze E and Angrish P et al (2007). Efficient peptide coupling involving sterically hindered amino acids. J Org Chem 72: 5794–5801 PubMedCrossRefGoogle Scholar
  691. 691.
    Katritzky AR, Khashab NM and Yoshioka M et al (2007). Microwave-assisted solid-phase peptide synthesis utilizing N-Fmoc-protected (α-aminoacyl)benzotriazoles. Chem Biol Drug Des 70: 465–468 PubMedCrossRefGoogle Scholar
  692. 692.
    De Luca L and Giacomelli G (2008). An easy microwave-assisted synthesis of sulfonamides directly from sulfonic acids. J Org Chem 73: 3967–3969 PubMedCrossRefGoogle Scholar
  693. 693.
    Flores Toque HA, Priviero FBM and Teixeira CE et al (2008). Synthesis and pharmacological evaluations of sildenafil analogues for treatment of erectile dysfunction. J Med Chem 51: 2807–2815 PubMedCrossRefGoogle Scholar
  694. 694.
    Katritzky AR, Angrish P (2006) Convenient and efficient preparation of N-protected (α-aminoacyl)oxy-substituted terpenes and alkanes. Synthesis: 4135-142Google Scholar
  695. 695.
    Remme N, Koschek K, Schneider C (2007) Scandium triflate catalyzed transesterification of carboxylic esters. Synlett: 491-93Google Scholar
  696. 696.
    Prediger I, Weiss T, Reiser O (2008) Facile access to 2-arylindolines and 2-arylindoles by microwave-assisted tandem radical cyclization. Synthesis: 2191-198Google Scholar
  697. 697.
    Portela-Cubillo F, Scott JS and Walton JC (2008). Microwave-assisted syntheses of N-heterocycles using alkenone-, alkynone- and aryl-carbonyl O-phenyl oximes: formal synthesis of neocryptolepine. J Org Chem 73: 5558–5565 PubMedCrossRefGoogle Scholar
  698. 698.
    Portela-Cubillo F, Scott JS, Walton JC (2007) Microwave-assisted preparations of dihydropyrroles from alkenone O-phenyl oximes. Chem Commun: 4041-043Google Scholar
  699. 699.
    Teichert A, Jantos K and Harms K et al (2004). One-pot homolytic aromatic substitutions/HWE olefinations under microwave conditions for the formation of a small oxindole library. Org Lett 6: 3477–3480 PubMedCrossRefGoogle Scholar
  700. 700.
    Merisor E, Conrad J and Klaiber I et al (2007). Triethyl phosphite mediated domino reaction: direct conversion of ω-nitroalkenes into N-heterocycles. Angew Chem Int Ed 46: 3353–3355 CrossRefGoogle Scholar
  701. 701.
    Merisor E, Conrad J, Mika S et al (2007) Microwave-assisted reductive cyclization of N-allyl 2-nitroanilines: a new approach to substituted 1,2,3,4-tetrahydroquinoxalines. Synlett: 2033-036Google Scholar
  702. 702.
    Parsons A, Sharpe D, Taylor P (2005) Radical addition reactions of diphenylphosphine sulfide. Synlett: 2981-983Google Scholar
  703. 703.
    Jessop CM, Parsons AF, Routledge A et al (2006) Radical addition reactions of phosphorus hydrides: tuning the reactivity of phosphorus hydrides, the use of microwaves and Horner–Wadsworth–Emmons-type reactions. Eur J Org Chem: 1547-554Google Scholar
  704. 704.
    Du Y, Creighton CJ and Yan Z et al (2005). The synthesis and evaluation of 10- and 12-membered ring benzofused enediyne amino acids. Bioorg Med Chem 13: 5936–5948 PubMedCrossRefGoogle Scholar
  705. 705.
    Hartung J, Daniel K and Gottwald T et al (2006). Microwave-assisted generation of alkoxyl radicals and their use in additions, β-fragmentations, and remote functionalizations. Org Biomol Chem 4: 2313–2322 PubMedCrossRefGoogle Scholar
  706. 706.
    Srinivasan N, Yurek-George A and Ganesan A (2005). Rapid deprotection of N-Boc amines by TFA combined with freebase generation using basic ion-exchange resins. Mol Divers 9: 291–293 PubMedCrossRefGoogle Scholar
  707. 707.
    Murray AJ, Parsons PJ and Hitchcock P (2007). The combined use of stereoelectronic control and ring closing metathesis for the synthesis of (-)-8-epi-swainsonine. Tetrahedron 63: 6485–6492 CrossRefGoogle Scholar
  708. 708.
    Carlsson AC, Jam F and Tullberg M et al (2006). Microwave-assisted synthesis of the Schöllkopf chiral auxiliaries: (3S)- and (3R)-3,6-dihydro-2,5-diethoxy-3-isopropyl-pyrazine. Tetrahedron Lett 47: 5199–5201 CrossRefGoogle Scholar
  709. 709.
    Raghuraman A, Riaz M, Hindle M and Desai UR (2007). Rapid and efficient microwave-assisted synthesis of highly sulfated organic scaffolds. Tetrahedron Lett 48: 6754–6758 PubMedCrossRefGoogle Scholar
  710. 710.
    Bode CM, Ting A and Schaus SE (2006). A general organic catalyst for asymmetric addition of stabilized nucleophiles to acyl imines. Tetrahedron 62: 11499–11505 CrossRefGoogle Scholar
  711. 711.
    Yin J, Spindler J, Linker T (2007) Simple synthesis of 2-C-branched glyco-acetic acids. Chem Comm: 2712-713Google Scholar
  712. 712.
    Magolan J, Carson CA and Kerr MA (2008). Total synthesis of (±)-mersicarpine. Org Lett 10: 1437–1440 PubMedCrossRefGoogle Scholar
  713. 713.
    Sá MM, Meier L (2006) Pyridine-free and solvent-free acetylation of nucleosides promoted by molecular sieves. Synlett: 3474-478Google Scholar
  714. 714.
    Marette C, Larrouquet C and Tisnès P et al (2006). A simple and efficient transprotection of aryl methyl ether to aryl benzoate under microwave activation. Tetrahedron Lett 47: 6947–6950 CrossRefGoogle Scholar
  715. 715.
    Luzzio FA and Chen J (2008). Efficient preparation and processing of the 4-methoxybenzyl (PMB) group for phenolic protection using ultrasound. J Org Chem 73: 5621–5624 PubMedCrossRefGoogle Scholar
  716. 716.
    Gregg BT, Golden KC and Quinn JF (2008). Indium(III)trifluoromethanesulfonate as a mild, efficient catalyst for the formation of acetals and ketals in the presence of acid sensitive functional groups. Tetrahedron 64: 3287–3295 CrossRefGoogle Scholar
  717. 717.
    Persson T, Johansen SK and Martiny L et al (2004). Synthesis of carbon-14 labelled (5Z)-4-bromo-5-(bromomethylene)-2(5H)- furanone: a potent quorum sensing inhibitor. J Label Comp Radiopharm 47: 627–634 CrossRefGoogle Scholar
  718. 718.
    Martins A and Lautens M (2008). A simple, cost-effective method for the regioselective deuteration of anilines. Org Lett 10: 4351–4353 PubMedCrossRefGoogle Scholar
  719. 719.
    Dahlén A, Prasad E, Hilmersson G and Flowers RA (2005). Exploring SmBr2-, SmI2-, and YbI2-mediated reactions assisted by microwave irradiation. Chem Eur J 11: 3279–3284 CrossRefGoogle Scholar
  720. 720.
    Polshettiwar V and Varma RS (2007). Tandem bis-aldol reaction of ketones: a facile one-pot synthesis of 1,3-dioxanes in aqueous medium. J Org Chem 72: 7420–7422 PubMedCrossRefGoogle Scholar
  721. 721.
    Katritzky AR, Vincek AS, Suzuki K (2005) Microwave-assisted synthesis of peptidyl phosphorus ylides. ARKIVOC V: 116-26Google Scholar
  722. 722.
    Jung ME and Maderna A (2005). Synthesis of bicyclo[2.2.2]oct-5-en-2-ones via a tandem intermolecular Michael addition intramolecular aldol process (a bridged Robinson annulation). Tetrahedron Lett 46: 5057–5061 CrossRefGoogle Scholar
  723. 723.
    Giraud A, Provot O and Peyrat JF et al (2006). Microwave-assisted efficient synthesis of 1,2-diaryldiketones: a novel oxidation reaction of diarylalkynes with DMSO promoted by FeBr3. Tetrahedron 62: 7667–7673 CrossRefGoogle Scholar
  724. 724.
    Corbu A, Gauron G and Castro JM et al (2008). Microwave-assisted domino reactions: function-compatibility, modulation, and greening efforts. Tetrahedron Asymmetry 19: 1730–1743 CrossRefGoogle Scholar
  725. 725.
    Zhang L and Zhang JY (2006). Microwave-assisted, boron trichloride mediated acylation of phenols-synthesis of (o-hydroxyaryl)(aryl)methanones and xanthones. J Comb Chem 8: 361–367 PubMedCrossRefGoogle Scholar
  726. 726.
    Bagley M, Lubinu MC (2006) Microwave-assisted oxidative aromatization of Hantzsch 1,4-dihydropyridines using manganese dioxide. Synthesis: 1283-288Google Scholar
  727. 727.
    Hellal M, Bihel F and Mongeot A et al (2006). Microwave-assisted cyclic amidine synthesis using TiCl4. Org Biomol Chem 4: 3142–3146 PubMedCrossRefGoogle Scholar
  728. 728.
    Monsieurs K, Rombouts G, Tapolcsányi P et al (2006) Synthesis of substituted phenanthrenes via intramolecular condensation based on temperature-dependent deprotonation using a weak carbonate base. Synlett: 3225-230Google Scholar
  729. 729.
    Nakamura H, Sugiishi T and Tanaka Y (2008). Synthesis of allenes via CuBr-catalyzed homologation of alk-1-ynes accelerated by microwave. Tetrahedron Lett 49: 7230–7233 CrossRefGoogle Scholar
  730. 730.
    de Souza ROMA, de Souza ALF and Fernández TL et al (2008). Morita-Baylis-Hillman reaction in water/ionic liquids under microwave irradiation. Lett Org Chem 5: 379–382 CrossRefGoogle Scholar
  731. 731.
    Liermann JC and Opatz T (2008). Synthesis of lamellarin U and lamellarin G trimethyl ether by alkylation of a deprotonated α-aminonitrile. J Org Chem 73: 4526–4531 PubMedCrossRefGoogle Scholar
  732. 732.
    Ishikura M, Hasunuma M and Yamada K et al (2006). Microwave-assisted cycloaddition reaction of azides to N-substituted 2-azabicyclo[2.2.1]hept-5-en-3-ones. Heterocycles 68: 2253–2257 CrossRefGoogle Scholar
  733. 733.
    Jiao L, Liang Y and Xu J (2006). Origin of the relative stereoselectivity of the β-lactam formation in the Staudinger reaction. J Am Chem Soc 128: 6060–6069 PubMedCrossRefGoogle Scholar
  734. 734.
    Hu L, Wang Y and Li B et al (2007). Diastereoselectivity in the Staudinger reaction: a useful probe for investigation of nonthermal microwave effects. Tetrahedron 63: 9387–9392 CrossRefGoogle Scholar
  735. 735.
    Veitch GE, Bridgwood KL, Rands-Trevor K, Ley SV (2008) Magnesium nitride as a convenient source of ammonia: preparation of pyrroles. Synlett: 2597-600Google Scholar
  736. 736.
    Werner S, Iyer PS and Fodor MD et al (2006). Solution-phase synthesis of a tricyclic pyrrole-2-carboxamide discovery library applying a Stetter–Paal–Knorr reaction sequence. J Comb Chem 8: 368–380 PubMedCrossRefGoogle Scholar
  737. 737.
    Mattson AE, Bharadwaj AR and Zuhl AM et al (2006). Thiazolium-catalyzed additions of acylsilanes: a general strategy for acyl anion addition reactions. J Org Chem 71: 5715–5724 PubMedCrossRefGoogle Scholar
  738. 738.
    Milgram BC, Eskildsen K and Richter SM et al (2007). Microwave-assisted Piloty-Robinson synthesis of 3,4-disubstituted pyrroles. J Org Chem 72: 3941–3944 PubMedCrossRefGoogle Scholar
  739. 739.
    Gupton JT, Banner EJ and Scharf AB et al (2006). The application of vinylogous iminium salt derivatives to an efficient synthesis of the pyrrole containing alkaloids rigidin and rigidin E. Tetrahedron 62: 8243–8255 CrossRefGoogle Scholar
  740. 740.
    Kim I, Choi J, Lee S, Lee GH (2008) A highly efficient catalyst-free cycloisomerization approach to indolizinones. Synlett: 2334-338Google Scholar
  741. 741.
    Lipinska TM and Czarnocki SJ (2006). A new approach to difficult Fischer synthesis: the use of zinc chloride catalyst in triethylene glycol under controlled microwave irradiation. Org Lett 8: 367–370 PubMedCrossRefGoogle Scholar
  742. 742.
    Lipinska TM (2006). Total synthesis of new indolo[2,3-a]quinolizine alkaloids sempervirine type, potential pharmaceuticals. Tetrahedron 62: 5736–5747 CrossRefGoogle Scholar
  743. 743.
    Kraus GA and Guo H (2008). One-pot synthesis of 2-substituted indoles from 2-aminobenzyl phosphonium salts. A formal total synthesis of arcyriacyanin A. Org Lett 10: 3061–3063 PubMedCrossRefGoogle Scholar
  744. 744.
    Fuwa H and Sasaki M (2009). Synthesis of 2-substituted indoles and indolines via Suzuki-Miyaura coupling/5-endo-trig cyclization strategies. J Org Chem 74: 212–221 PubMedCrossRefGoogle Scholar
  745. 745.
    Savarin CG, Grise C and Murry JA et al (2007). Novel intramolecular reactivity of oximes: synthesis of cyclic and spiro-fused imines. Org Lett 9: 981–983 PubMedCrossRefGoogle Scholar
  746. 746.
    Goncalves S, Wagner A, Mioskowski C and Baati R (2009). Microwave-assisted synthesis of 4-keto-4,5,6,7-tetrahydrobenzofurans. Tetrahedron Lett 50: 274–276 CrossRefGoogle Scholar
  747. 747.
    Schweizer E, Gaich T, Brecker L et al (2007) Synthetic studies towards the total synthesis of providencin. Synthesis: 3807-3814Google Scholar
  748. 748.
    Eidamshaus C and Burch JD (2008). One-pot synthesis of benzofurans via palladium-catalyzed enolate arylation with o-bromophenols. Org Lett 10: 4211–4214 PubMedCrossRefGoogle Scholar
  749. 749.
    Humphries PS and Finefield JM (2006). Microwave-assisted synthesis utilizing supported reagents: a rapid and versatile synthesis of 1,5-diarylpyrazoles. Tetrahedron Lett 47: 2443–2446 CrossRefGoogle Scholar
  750. 750.
    Ahlstrom MM, Ridderstrom M and Zamora I et al (2007). CYP2C9 Structure-metabolism relationships: optimizing the metabolic stability of COX-2 inhibitors. J Med Chem 50: 4444–4452 PubMedCrossRefGoogle Scholar
  751. 751.
    Pinkerton AB, Huang D and Cube RV et al (2007). Diaryl substituted pyrazoles as potent CCR2 receptor antagonists. Bioorg Med Chem Lett 17: 807–813 PubMedCrossRefGoogle Scholar
  752. 752.
    Bagley MC, Davis T and Dix MC et al (2006). Microwave-assisted synthesis of N-pyrazole ureas and the p38α inhibitor BIRB 796 for study into accelerated cell ageing. Org Biomol Chem 4: 4158–4164 PubMedCrossRefGoogle Scholar
  753. 753.
    Bagley M, Lubinu MC, Mason C (2007) Regioselective microwave-assisted synthesis of substituted pyrazoles from ethynyl ketones. Synlett: 704-08Google Scholar
  754. 754.
    Borisov AV, Gorobets NY and Yermolayev SA et al (2007). One-pot microwave-assisted synthesis of a benzopyrano[2,3-c]pyrazol-3(2H)-one library. J Comb Chem 9: 909–911 PubMedCrossRefGoogle Scholar
  755. 755.
    Daniels RN, Kim K and Lebois EP et al (2008). Microwave-assisted protocols for the expedited synthesis of pyrazolo[1,5-a] and [3,4-d]pyrimidines. Tetrahedron Lett 49: 305–310 CrossRefGoogle Scholar
  756. 756.
    Quiroga J, Trilleras J and Insuasty B et al (2008). Microwave-assisted synthesis of pyrazolo[3,4-d]pyrimidines from 2-amino-4,6-dichloropyrimidine-5-carbaldehyde under solvent-free conditions. Tetrahedron Lett 49: 3257–3259 CrossRefGoogle Scholar
  757. 757.
    Wolkenberg SC, Wisnoski DD and Leister WH et al (2004). Efficient synthesis of imidazoles from aldehydes and 1,2-diketones using microwave irradiation. Org Lett 6: 1453–1456 PubMedCrossRefGoogle Scholar
  758. 758.
    Soh CH, Chui WK and Lam Y (2008). An efficient and expeditious synthesis of di- and monosubstituted 2-aminoimidazoles. J Comb Chem 10: 118–122 PubMedCrossRefGoogle Scholar
  759. 759.
    Koubachi J, El Kazzouli S and Berteina-Raboin S et al (2007). Synthesis of polysubstituted imidazo[1,2-a]pyridines via microwave-assisted one-pot cyclization/Suzuki coupling/palladium-catalyzed heteroarylation. J Org Chem 72: 7650–7655 PubMedCrossRefGoogle Scholar
  760. 760.
    Ermolat’ev DS and Van der Eycken EV (2008). A divergent synthesis of substituted 2-aminoimidazoles from 2-aminopyrimidines. J Org Chem 73: 6691–6697 PubMedCrossRefGoogle Scholar
  761. 761.
    Ermolat’ev DS, Babaev EV and Van der Eycken EV (2006). Efficient one-pot, two-step, microwave-assisted procedure for the synthesis of polysubstituted 2-aminoimidazoles. Org Lett 8: 5781–5784 PubMedCrossRefGoogle Scholar
  762. 762.
    Soh CH, Chui WK and Lam Y (2006). Synthesis of 2,4-disubstituted 5-aminoimidazoles using microwave irradiation. J Comb Chem 8: 464–468 PubMedCrossRefGoogle Scholar
  763. 763.
    Aidouni A, Demonceau A, Delaude L (2006) Microwave-assisted synthesis of N-heterocyclic carbene precursors. Synlett: 493-95Google Scholar
  764. 764.
    Lin SY, Isome Y and Stewart E et al (2006). Microwave-assisted one step high-throughput synthesis of benzimidazoles. Tetrahedron Lett 47: 2883–2886 CrossRefGoogle Scholar
  765. 765.
    VanVliet DS, Gillespie P and Scicinski JJ (2005). Rapid one-pot preparation of 2-substituted benzimidazoles from 2-nitroanilines using microwave conditions. Tetrahedron Lett 46: 6741–6743 CrossRefGoogle Scholar
  766. 766.
    Al-Dweik M, Zahra J and Khanfar M et al (2008). Heterocycles [h]-fused to 4-oxoquinoline-3-carboxylic acid. Part VII: synthesis of some 6-oxoimidazo[4,5-h]quinoline-7-carboxylic acids and esters. Monatsh Chem 139: 1434–4475 Google Scholar
  767. 767.
    Ursic U, Groselj U and Meden A et al (2008). Regiospecific [2+2] cycloadditions of electron-poor acetylenes to (Z)-2-acylamino-3-dimethylaminopropenoates: synthesis of highly functionalised buta-1,3-dienes. Tetrahedron Lett 49: 3775–3778 CrossRefGoogle Scholar
  768. 768.
    Chiacchio U, Rescifina A and Saita MG et al (2005). Zinc(II) triflate-controlled 1,3-dipolar cycloadditions of C-(2-thiazolyl)nitrones: application to the synthesis of a novel isoxazolidinyl analogue of tiazofurin. J Org Chem 70: 8991–9001 PubMedCrossRefGoogle Scholar
  769. 769.
    Rescifina A, Chiacchio MA and Corsaro A et al (2006). Synthesis and biological activity of isoxazolidinyl polycyclic aromatic hydrocarbons: potential DNA intercalators. J Med Chem 49: 709–715 PubMedCrossRefGoogle Scholar
  770. 770.
    Yong SR, Ung AT and Pyne SG et al (2007). Synthesis of novel 3′ spirocyclic-oxindole derivatives and assessment of their cytostatic activities. Tetrahedron 63: 5579–5586 CrossRefGoogle Scholar
  771. 771.
    Wipf P, Fletcher JM and Scarone L (2005). Microwave promoted oxazole synthesis: cyclocondensation cascade of oximes and acyl chlorides. Tetrahedron Lett 46: 5463–5466 CrossRefGoogle Scholar
  772. 772.
    Huxley A (2006) Microwave-assisted synthesis of benzoxazole-7-carboxylate esters using trifluoroacetic acid and acetic acid. Synlett: 2658-660Google Scholar
  773. 773.
    Kamila S, Zhang H and Biehl ER (2005). One-pot synthesis of 2-aryl- and 2-alkylbenzothiazoles under microwave irradiation. Heterocycles 65: 2119–2126 CrossRefGoogle Scholar
  774. 774.
    Mu XJ, Zou JP and Zeng RS et al (2005). Mn(III)-Promoted cyclization of substituted thioformanilides under microwave irradiation: a new reagent for 2-substituted benzothiazoles. Tetrahedron Lett 46: 4345–4347 CrossRefGoogle Scholar
  775. 775.
    Kazmaier U and Ackermann S (2005). A straightforward approach towards thiazoles and endothiopeptides via Ugi reaction. Org Biomol Chem 3: 3184–3187 PubMedCrossRefGoogle Scholar
  776. 776.
    Merritt E, Bagley M (2007) Holzapfel–Meyers–Nicolaou modification of the Hantzsch thiazole synthesis. Synthesis: 3535-541Google Scholar
  777. 777.
    Yuan C, Liu Q and St.Jean DJ et al (2007). The discovery of 2-anilinothiazolones as 11β-HSD1 inhibitors. Bioorg Med Chem Lett 17: 6056–6061 PubMedCrossRefGoogle Scholar
  778. 778.
    Gao Y and Lam Y (2008). [3+2] Cycloaddition reactions in the synthesis of triazolo[4,5-b]pyridin-5-ones and pyrrolo[3,4-b]pyridin-2-ones. J Comb Chem 10: 327–332 PubMedCrossRefGoogle Scholar
  779. 779.
    Yeung KS, Farkas ME, Kadow JF and Meanwell NA (2005). A base-catalyzed, direct synthesis of 3,5-disubstituted 1,2,4-triazoles from nitriles and hydrazides. Tetrahedron Lett 46: 3429–3432 CrossRefGoogle Scholar
  780. 780.
    Aldrich LN, Lebois EP and Lewis LM et al (2009). MAOS protocols for the general synthesis and lead optimization of 3,6-disubstituted-[1,2,4]triazolo[4,3-b]pyridazines. Tetrahedron Lett 50: 212–215 CrossRefGoogle Scholar
  781. 781.
    Adib M, Jahromi AH and Tavoosi N et al (2006). Microwave-assisted efficient, one-pot, three-component synthesis of 3,5-disubstituted 1,2,4-oxadiazoles under solvent-free conditions. Tetrahedron Lett 47: 2965–2967 CrossRefGoogle Scholar
  782. 782.
    Kurz T, Lolak N and Geffken D (2007). Rapid and efficient microwave-assisted synthesis of 5-amino-3-aralkoxy(methoxy)amino-1,2,4-oxadiazoles. Tetrahedron Lett 48: 2733–2735 CrossRefGoogle Scholar
  783. 783.
    García Mancheño O and Bolm C (2007). Synthesis of N-(1H)-tetrazole sulfoximines. Org Lett 9: 2951–2954 CrossRefGoogle Scholar
  784. 784.
    Sevilla S, Forns P and Fernàndez JC et al (2006). Microwave-assisted synthesis of 1,3-dihydro-[1,2,5]thiadiazolo[3,4-b]pyrazine-2,2-dioxides. Tetrahedron Lett 47: 8603–8606 CrossRefGoogle Scholar
  785. 785.
    Shie JJ and Fang JM (2007). Microwave-assisted one-pot tandem reactions for direct conversion of primary alcohols and aldehydes to triazines and tetrazoles in aqueous media. J Org Chem 72: 3141–3144 PubMedCrossRefGoogle Scholar
  786. 786.
    Semple G, Skinner PJ and Gharbaoui T et al (2008). 3-(1H-tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (MK-0354): a partial agonist of the nicotinic acid receptor, G-protein coupled receptor 109a, with antilipolytic but no vasodilatory activity in mice. J Med Chem 51: 5101–5108 PubMedCrossRefGoogle Scholar
  787. 787.
    Gorobets NY, Yousefi BH and Belaj F et al (2004). Rapid microwave-assisted solution phase synthesis of substituted 2-pyridone libraries. Tetrahedron 60: 8633–8644 CrossRefGoogle Scholar
  788. 788.
    Adams J, Hardin A and Vounatsos F (2006). Microwave-assisted synthesis of new polysubstituted dienaminoesters and their cyclization to 3-bromo-2(1H)-pyridinones. J Org Chem 71: 9895–9898 PubMedCrossRefGoogle Scholar
  789. 789.
    Jia CS, Zhang Z, Tu SJ and Wang GW (2006). Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: comparative study of microwave irradiation versus conventional heating. Org Biomol Chem 4: 104–110 PubMedCrossRefGoogle Scholar
  790. 790.
    Lekhok K, Prajapati D, Boruah R (2008) Indium(III) trifluoromethanesulfonate: an efficient reusable catalyst for the alkynylation-cyclization of 2-aminoaryl ketones and synthesis of 2,4-disubstituted quinolines. Synlett: 655-58Google Scholar
  791. 791.
    Tu S, Zhang J and Jia R et al (2007). An efficient route for the synthesis of a new class of pyrido[2,3-d]pyrimidine derivatives. Org Biomol Chem 5: 1450–1453 PubMedCrossRefGoogle Scholar
  792. 792.
    Glasnov TN, Stadlbauer W and Kappe CO (2005). Microwave-assisted multistep synthesis of functionalized 4-arylquinolin-2(1H)-ones using palladium-catalyzed cross-coupling chemistry. J Org Chem 70: 3864–3870 PubMedCrossRefGoogle Scholar
  793. 793.
    Rivkin A and Adams B (2006). Solvent-free microwave synthesis of 4-hydroxy-3-phenylquinolin-2(1H)-ones and variants using activated arylmalonates. Tetrahedron Lett 47: 2395–2398 CrossRefGoogle Scholar
  794. 794.
    Chichetti SM, Ahearn SP and Adams B et al (2007). Solvent-free microwave synthesis of novel 6-hydroxypyrimidin-4(1H)-one derivatives using arylmalonates. Tetrahedron Lett 48: 8250–8252 CrossRefGoogle Scholar
  795. 795.
    Chichetti SM, Ahearn SP and Rivkin A (2008). A novel strategy for the synthesis of uracil derivatives using bis(pentafluorophenyl)imidodicarbonate. Tetrahedron Lett 49: 6081–6083 CrossRefGoogle Scholar
  796. 796.
    Mésangeau C, Yous S and Pérès B et al (2005). Pictet-Spengler heterocyclizations via microwave-assisted degradation of DMSO. Tetrahedron Lett 46: 2465–2468 CrossRefGoogle Scholar
  797. 797.
    Aberg V, Norman F and Chorell E et al (2005). Microwave-assisted decarboxylation of bicyclic 2-pyridone scaffolds and identification of Aβ-peptide aggregation inhibitors. Org Biomol Chem 3: 2817–2823 PubMedCrossRefGoogle Scholar
  798. 798.
    Tomaszewski MJ, Whalley A and Hu YJ (2008). A one-pot synthesis of 2,3-dihydro-1H-pyrrolo[3,2-c]quinolines. Tetrahedron Lett 49: 3172–3175 CrossRefGoogle Scholar
  799. 799.
    Duvelleroy D, Perrio C and Parisel O et al (2005). Rapid synthesis of quinoline-4-carboxylic acid derivatives from arylimines and 2-substituted acrylates or acrylamides under indium(III) chloride and microwave activations. Scope and limitations of the reaction. Org Biomol Chem 3: 3794–3804 PubMedCrossRefGoogle Scholar
  800. 800.
    Fernandez SY, Raw SA and Taylor RJK (2005). Improved methodologies for the preparation of highly substituted pyridines. J Org Chem 70: 10086–10095 CrossRefGoogle Scholar
  801. 801.
    Lee HK, Cao H and Rana TM (2005). Design, microwave-assisted synthesis, and photophysical properties of small molecule organic antennas for luminescence resonance energy transfer. J Comb Chem 7: 279–284 PubMedCrossRefGoogle Scholar
  802. 802.
    Kabalka GW and Mereddy AR (2005). Microwave-assisted synthesis of functionalized flavones and chromones. Tetrahedron Lett 46: 6315–6317 CrossRefGoogle Scholar
  803. 803.
    Seijas JA, Vazquez-Tato MP and Carballido-Reboredo R (2005). Solvent-free synthesis of functionalized flavones under microwave irradiation. J Org Chem 70: 2855–2858 PubMedCrossRefGoogle Scholar
  804. 804.
    Katkevičs M, Kontijevskis A and Mutule I et al (2007). Microwave-promoted automated synthesis of a coumarin library. Chem Heterocycl Comp 43: 151–159 CrossRefGoogle Scholar
  805. 805.
    Hellal M, Bourguignon JJ and Bihel FJJ (2008). 6-endo-dig Cyclization of heteroarylesters to alkynes promoted by Lewis acid catalyst in the presence of Brønsted acid. Tetrahedron Lett 49: 62–65 CrossRefGoogle Scholar
  806. 806.
    Sandin H, Swanstein ML and Wellner E (2004). A fast and parallel route to cyclic isothioureas and guanidines with use of microwave-assisted chemistry. J Org Chem 69: 1571–1580 PubMedCrossRefGoogle Scholar
  807. 807.
    Movassaghi M and Hill MD (2006). Single-step synthesis of pyrimidine derivatives. J Am Chem Soc 128: 14254–14255 PubMedCrossRefGoogle Scholar
  808. 808.
    Chilin A, Marzaro G and Zanatta S et al (2007). A microwave improvement in the synthesis of the quinazoline scaffold. Tetrahedron Lett 48: 3229–3231 CrossRefGoogle Scholar
  809. 809.
    Ferrini S, Ponticelli F and Taddei M (2007). Convenient synthetic approach to 2,4-disubstituted quinazolines. Org Lett 9: 69–72 PubMedCrossRefGoogle Scholar
  810. 810.
    Hill MD and Movassaghi M (2008). Observations on the use of microwave irradiation in azaheterocycle synthesis. Tetrahedron Lett 49: 4286–4288 CrossRefGoogle Scholar
  811. 811.
    Ming L, Shuwen W and Lirong W et al (2005). A convenient, rapid, and highly selective method for synthesis of new pyrazolo[1,5-a]pyrimidines via the reaction of enaminones and 5-amino-1H-pyrazoles under microwave irradiation. J Heterocycl Chem 42: 925–930 CrossRefGoogle Scholar
  812. 812.
    Shaaban MR (2008). Microwave-assisted synthesis of fused heterocycles incorporating trifluoromethyl moiety. J Fluor Chem 129: 1156–1161 CrossRefGoogle Scholar
  813. 813.
    Yoon DS, Han Y and Stark TM et al (2004). Efficient synthesis of 4-aminoquinazoline and thieno[3,2-d]pyrimidin-4-ylamine derivatives by microwave irradiation. Org Lett 6: 4775–4778 PubMedCrossRefGoogle Scholar
  814. 814.
    Li Z, Huang H and Sun H et al (2008). Microwave-assisted efficient and convenient synthesis of 2,4(1H,3H)-quinazolinediones and 2-thioxoquinazolines. J Comb Chem 10: 484–486 PubMedCrossRefGoogle Scholar
  815. 815.
    Liu JF, Lee J and Dalton AM et al (2005). Microwave-assisted one-pot synthesis of 2,3-disubstituted 3H-quinazolin-4-ones. Tetrahedron Lett 46: 1241–1244 CrossRefGoogle Scholar
  816. 816.
    Liu J-F, Ye P and Sprague K et al (2005). Novel one-pot total syntheses of deoxyvasicinone, mackinazolinone, isaindigotone, and their derivatives promoted by microwave irradiation. Org Lett 7: 3363–3366 PubMedCrossRefGoogle Scholar
  817. 817.
    Kostakis IK, Elomri A and Seguin E et al (2007). Rapid synthesis of 2,3-disubstituted-quinazolin-4-ones enhanced by microwave-assisted decomposition of formamide. Tetrahedron Lett 48: 6609–6613 CrossRefGoogle Scholar
  818. 818.
    Kalusa A, Chessum N and Jones K (2008). An efficient synthesis of 2,3-diaryl (3H)-quinazolin-4-ones via imidoyl chlorides. Tetrahedron Lett 49: 5840–5842 CrossRefGoogle Scholar
  819. 819.
    Tyagarajan S and Chakravarty PK (2005). Synthesis of pyrimidines from ketones using microwave irradiation. Tetrahedron Lett 46: 7889–7891 CrossRefGoogle Scholar
  820. 820.
    Nie A, Wang J and Huang Z (2006). Microwave-assisted solution-phase parallel synthesis of 2,4,6-trisubstituted pyrimidines. J Comb Chem 8: 646–648 PubMedCrossRefGoogle Scholar
  821. 821.
    Devi I and Bhuyan PJ (2005). An expedient method for the synthesis of 6-substituted uracils under microwave irradiation in a solvent-free medium. Tetrahedron Lett 46: 5727–5729 CrossRefGoogle Scholar
  822. 822.
    Avalos M, Babiano R and Cintas P et al (2006). A one-pot domino reaction in constructing isoorotate bases and their nucleosides. Tetrahedron Lett 47: 1989–1992 CrossRefGoogle Scholar
  823. 823.
    Yoburn JC and Baskaran S (2005). Chemoselective arylamidine cyclizations: mild formation of 2-arylimidazole-4-carboxylic acids. Org Lett 7: 3801–3803 PubMedCrossRefGoogle Scholar
  824. 824.
    Sagar R and Park SB (2008). Facile and efficient synthesis of carbohybrids as stereodivergent druglike small molecules. J Org Chem 73: 3270–3273 PubMedCrossRefGoogle Scholar
  825. 825.
    Kim SY, Park KH, Chung YK (2005) Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation. Chem Commun: 1321-323Google Scholar
  826. 826.
    Kamila S and Biehl ER (2006). Synthetic studies of bioactive quinoxalinones: a facile approach to potent euglycemic and hypolipidemic agents. Heterocycles 68: 1931–1939 CrossRefGoogle Scholar
  827. 827.
    Jainta M, Nieger M, Bräse S (2008) Microwave-assisted stereoselective one-pot synthesis of symmetrical and unsymmetrical 2,5-diketopiperazines from unprotected amino acids. Eur J Org Chem: 5418-424Google Scholar
  828. 828.
    Minetto G, Lampariello LR, Taddei M (2005) Microwave-assisted synthesis of polysubstituted pyridazines. Synlett: 2743-746Google Scholar
  829. 829.
    Caprosu MD, Butnariu RM and Mangalagiu II (2005). Synthesis and antimicrobial activity of some new pyridazine derivatives. Heterocycles 65: 1871–1879 CrossRefGoogle Scholar
  830. 830.
    Zbancioc GN, Caprosu MC, Moldoveanu CC et al (2005) Microwave assisted synthesis for dimers via [3+3] dipolar cycloadditions. ARKIVOC X:189-98Google Scholar
  831. 831.
    Hoogenboom R, Moore BC and Schubert US (2006). Microwave-assisted synthesis of 3,6-di(pyridin-2-yl) pyridazines: unexpected ketone and aldehyde cycloadditions. J Org Chem 71: 4903–4909 PubMedCrossRefGoogle Scholar
  832. 832.
    Dai WM, Wang X and Ma C (2005). Microwave-assisted one-pot regioselective synthesis of 2-alkyl-3,4-dihydro-3-oxo-2H-1,4-benzoxazines. Tetrahedron 61: 6879–6885 CrossRefGoogle Scholar
  833. 833.
    Yuan Y, Liu G and Li et al (2007). Synthesis of diverse benzo[1,4] oxazin-3-one-based compounds using 1,5-difluoro-2,4-dinitrobenzene. J Comb Chem 9: 158–170 PubMedCrossRefGoogle Scholar
  834. 834.
    Feng G, Wu J and Dai WM (2006). One-pot regioselective annulation toward 3,4-dihydro-3-oxo-2H-1,4-benzoxazine scaffolds under controlled microwave heating. Tetrahedron 62: 4635–4642 CrossRefGoogle Scholar
  835. 835.
    Xing X, Wu J, Feng G and Dai WM (2006). Microwave-assisted one-pot U-4CR and intramolecular O-alkylation toward heterocyclic scaffolds. Tetrahedron 62: 6774–6781 CrossRefGoogle Scholar
  836. 836.
    Liu JF, Kaselj M and Isome Y et al (2005). Microwave-assisted concise total syntheses of quinazolinobenzodiazepine alkaloids. J Org Chem 70: 10488–10493 PubMedCrossRefGoogle Scholar
  837. 837.
    Ohta Y, Chiba H and Oishi S et al (2008). Concise synthesis of indole-fused 1,4-diazepines through copper(I)-catalyzed domino three-component coupling–cyclization–N-arylation under microwave irradiation. Org Lett 10: 3535–3538 PubMedCrossRefGoogle Scholar
  838. 838.
    Beeler AB, Acquilano DE and Su Q et al (2005). Synthesis of a library of complex macrodiolides employing cyclodimerization of hydroxy esters. J Comb Chem 7: 673–681 PubMedCrossRefGoogle Scholar
  839. 839.
    Abbiati G, Arcadi A and Bellinazzi A et al (2005). Intramolecular cyclization of δ-iminoacetylenes: a new entry to pyrazino[1,2-a]indoles. J Org Chem 70: 4088–4095 PubMedCrossRefGoogle Scholar
  840. 840.
    Vvedensky VY, Ivanov YV and Kysil V et al (2005). Microwave-mediated reactions of 3-aminomethylpyridines with acetylenedicarboxylates. A novel synthetic route to dihydronaphthyridines and naphthyridine-1-ones. Tetrahedron Lett 46: 3953–3956 CrossRefGoogle Scholar
  841. 841.
    Kaval N, Halasz-Dajka B and Vo-Thanh G et al (2005). An efficient microwave-assisted solvent-free synthesis of pyrido-fused ring systems applying the tert-amino effect. Tetrahedron 61: 9052–9057 CrossRefGoogle Scholar
  842. 842.
    Lebrini M, Bentiss F and Vezin H et al (2005). Crown compounds containing a 1,3,4-thiadiazole moiety: microwave assisted synthesis, crystal structure and quantum calculations. Heterocycles 65: 2847–2860 CrossRefGoogle Scholar
  843. 843.
    Buckley BR, Boxhall JY, Bulman PC et al (2006) Mannich and O-alkylation reactions of tetraalkoxyresorcin[4]arenes—the use of some products in ligand-assisted reactions. Eur J Org Chem: 5117-134Google Scholar
  844. 844.
    Koizumi H, Itoh Y and Ichikawa T (2006). On the magic of microwave-assisted organic synthesis 1,5-benzodiazepin-2-one from o-phenylenediamine and ethyl acetoacetate. Chem Lett 35: 1350–1351 CrossRefGoogle Scholar
  845. 845.
    Giuseppone N, Schmitt JL and Lehn JM (2006). Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of [2 × 2] gridlike arrays under the pessure of metal ion coordination. J Am Chem Soc 128: 16748–16763 PubMedCrossRefGoogle Scholar
  846. 846.
    Miljanic OS, Dichtel WR and Mortezaei S et al (2006). Cyclobis(paraquat-p-phenylene)-based [2]catenanes prepared by kinetically controlled reactions involving alkynes. Org Lett 8: 4835–4838 PubMedCrossRefGoogle Scholar
  847. 847.
    Su S and Porco JA (2007). 1,2-Dihydroisoquinolines as templates for cascade reactions to access isoquinoline alkaloid frameworks. Org Lett 9: 4983–4986 PubMedCrossRefGoogle Scholar
  848. 848.
    Cho TJ, Shreiner CD, Hwang SH et al (2007) 5,10,15,20- Tetrakis[4′-(terpyridinyl)phenyl]porphyrin and its RuII complexes: synthesis, photovoltaic properties, and self-assembled morphology. Chem Commun: 4456-458Google Scholar
  849. 849.
    Dogutan DK, Zaidi SHH and Thamyongkit P et al (2007). New route to ABCD-porphyrins via bilanes. J Org Chem 72: 7701–7714 PubMedCrossRefGoogle Scholar
  850. 850.
    Chandrasekharam M, Rao CS and Singh SP et al (2007). Microwave-assisted synthesis of metalloporphyrazines. Tetrahedron Lett 48: 2627–2630 CrossRefGoogle Scholar
  851. 851.
    Elghamry I and Tietze LF (2008). Microwave assisted synthesis of novel annealed porphyrins. Tetrahedron Lett 49: 3972–3975 CrossRefGoogle Scholar
  852. 852.
    Geske GD, Wezeman RJ, Siegel AP and Blackwell HE (2005). Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127: 12762–12763 PubMedCrossRefGoogle Scholar
  853. 853.
    Geske GD, O’Neill JC and Miller DM et al (2007). Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J Am Chem Soc 129: 13613–13625 PubMedCrossRefGoogle Scholar
  854. 854.
    Murray JK and Gellman SH (2005). Application of microwave irradiation to the synthesis of 14-helical β-peptides. Org Lett 7: 1517–1520 PubMedCrossRefGoogle Scholar
  855. 855.
    Petersson EJ and Schepartz A (2008). Toward β-amino acid proteins: design, synthesis and characterization of a fifteen kilodalton β-peptide tetramer. J Am Chem Soc 130: 821–823 PubMedCrossRefGoogle Scholar
  856. 856.
    Wisén S, Androsavich J and Evans CG et al (2008). Chemical modulators of heat shock protein 70 (Hsp70) by sequential, microwave-accelerated reactions on solid phase. Bioorg Med Chem Lett 18: 60–65 PubMedCrossRefGoogle Scholar
  857. 857.
    Rizzolo F, Sabatino G and Chelli M et al (2007). A convenient microwave-enhanced solid-phase synthesis of difficult peptide sequences: case study of gramicidin A and CSF114(Glc). Int J Pept Res Ther 13: 203–208 CrossRefGoogle Scholar
  858. 858.
    Chen PH, Tseng YH and Mou Y et al (2008). Adsorption of a statherin peptide fragment on the surface of nanocrystallites of hydroxyapatite. J Am Chem Soc 130: 2862–2868 PubMedCrossRefGoogle Scholar
  859. 859.
    Coantic S, Subra G and Martinez J (2008). Microwave-assisted solid phase peptide synthesis on high loaded resins. Int J Pept Res Ther 14: 143–147 CrossRefGoogle Scholar
  860. 860.
    Matsushita T, Hinou H and Kurogochi M et al (2005). Rapid microwave-assisted solid-phase glycopeptide synthesis. Org Lett 7: 877–880 PubMedCrossRefGoogle Scholar
  861. 861.
    Diaz-Mochon JJ, Fara MA and Sanchez-Martin RM et al (2008). Peptoid dendrimers—microwave-assisted solid-phase synthesis and transfection agent evaluation. Tetrahedron Lett 49: 923–926 CrossRefGoogle Scholar
  862. 862.
    Fara MA, Díaz-Mochón JJ and Bradley M (2006). Microwave-assisted coupling with DIC/HOBt for the synthesis of difficult peptoids and fluorescently labelled peptides—a gentle heat goes a long way. Tetrahedron Lett 47: 1011–1014 CrossRefGoogle Scholar
  863. 863.
    Park MS, Oh HS and Cho H et al (2007). Microwave-assisted solid-phase synthesis of pseudopeptides containing reduced amide bond. Tetrahedron Lett 48: 1053–1057 CrossRefGoogle Scholar
  864. 864.
    Paolini I, Nuti F and de la Cruz Pozo-Carrero M et al (2007). A convenient microwave-assisted synthesis of N-glycosyl amino acids. Tetrahedron Lett 48: 2901–2904 CrossRefGoogle Scholar
  865. 865.
    Palasek SA, Cox ZJ and Collins JM (2007). Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 13: 143–148 PubMedCrossRefGoogle Scholar
  866. 866.
    Bowman MD, Jeske RC and Blackwell HE (2004). Microwave-accelerated SPOT-synthesis on cellulose supports. Org Lett 6: 2019–2022 PubMedCrossRefGoogle Scholar
  867. 867.
    Bowman MD, Jacobson MM and Blackwell HE (2006). Discovery of fluorescent cyanopyridine and deazalumazine dyes using small molecule macroarrays. Org Lett 8: 1645–1648 PubMedCrossRefGoogle Scholar
  868. 868.
    Lin Q, O’Neil JC and Blackwell HE (2005). Small molecule macroarray construction via Ugi four-component reactions. Org Lett 7: 4455–4458 PubMedCrossRefGoogle Scholar
  869. 869.
    Lin Q, Blackwell HE (2006) Rapid synthesis of diketopiperazine macroarrays via Ugi four-component reactions on planar solid supports. Chem Commun: 2884-886Google Scholar
  870. 870.
    Portal C, Launay D and Merritt A et al (2005). High throughput physical organic chemistry: analytical constructs for monomer reactivity profiling. J Comb Chem 7: 554–560 PubMedCrossRefGoogle Scholar
  871. 871.
    Leonetti F, Capaldi C and Carotti A (2007). Microwave-assisted solid phase synthesis of Imatinib, a blockbuster anticancer drug. Tetrahedron Lett 48: 3455–3458 CrossRefGoogle Scholar
  872. 872.
    Sun LP and Dai WM (2006). An engineered linker capable of promoting on-resin reactions for microwave-assisted solid-phase organic synthesis. Angew Chem Int Ed 45: 7255–7258 CrossRefGoogle Scholar
  873. 873.
    Merkx R, Rijkers DTS and van Haren MJ et al (2007). Resin-bound sulfonyl azides: efficient loading and activation strategy for the preparation of the N-acyl sulfonamide linker. J Org Chem 72: 4574–4577 PubMedCrossRefGoogle Scholar
  874. 874.
    Isidro-Llobet A, Alvarez M and Burger K et al (2007). p-Nitromandelic acid as a highly acid-stable safety-catch linker for solid-phase synthesis of peptide and depsipeptide acids. Org Lett 9: 1429–1432 PubMedCrossRefGoogle Scholar
  875. 875.
    Akamatsu H, Fukase K, Kusumoto S (2004) Solid-phase synthesis of indol-2-ones by microwave-assisted radical cyclization. Synlett: 1049-053Google Scholar
  876. 876.
    De Luca L, Giacomelli G and Porcheddu A (2005). Synthesis of 1-alkyl-4-imidazolecarboxylates: a catch and release strategy. J Comb Chem 7: 905–908 PubMedCrossRefGoogle Scholar
  877. 877.
    Cerezo V, Amblard M and Martinez J et al (2008). Solid-phase synthesis of 5-arylhistidines via a microwave-assisted Suzuki–Miyaura cross-coupling. Tetrahedron 64: 10538–10545 CrossRefGoogle Scholar
  878. 878.
    Grieco P, Cai M and Liu L et al (2008). Design and microwave-assisted synthesis of novel macrocyclic peptides active at melanocortin receptors: discovery of potent and selective hMC5R receptor antagonists. J Med Chem 51: 2701–2707 PubMedCrossRefGoogle Scholar
  879. 879.
    Gachkova N, Cassel J and Leue S et al (2005). The solid-phase Nicholas reaction: scope and limitations. J Comb Chem 7: 449–457 PubMedCrossRefGoogle Scholar
  880. 880.
    Tsukamoto H, Suzuki R and Kondo Y (2006). Revisiting benzenesulfonyl linker for the deoxygenation and multifunctionalization of phenols. J Comb Chem 8: 289–292 PubMedCrossRefGoogle Scholar
  881. 881.
    Tullberg M, Luthman K and Grøtli M (2006). Microwave-assisted solid-phase synthesis of 2,5-diketopiperazines: solvent and resin dependence. J Comb Chem 8: 915–922 PubMedCrossRefGoogle Scholar
  882. 882.
    Luca LD, Giacomelli G and Nieddu G (2008). Synthesis of substituted benzofurans via microwave-enhanced catch and release strategy. J Comb Chem 10: 517–520 PubMedCrossRefGoogle Scholar
  883. 883.
    Lim HJ, Myung D and Lee IYC et al (2008). Microwave-assisted synthesis of benzimidazoles, benzoxazoles, and benzothiazoles from resin-bound esters. J Comb Chem 10: 501–503 PubMedCrossRefGoogle Scholar
  884. 884.
    Carlson EE, May JF and Kiessling LL (2006). Chemical probes of UDP-galactopyranose mutase. Chem Biol 13: 825–837 PubMedCrossRefGoogle Scholar
  885. 885.
    Bando T, Fujimoto J and Minoshima M et al (2007). Detection of CAG repeat DNA sequences by pyrene-functionalized pyrrole-imidazole polyamides. Bioorg Med Chem 15: 6937–6942 PubMedCrossRefGoogle Scholar
  886. 886.
    Chang WJ, Kulkarni MV and Sun CM (2006). Traceless and stereoselective synthesis of tetrahydro-β-carbolinethiohydantoins by microwave irradiation. J Comb Chem 8: 141–144 PubMedCrossRefGoogle Scholar
  887. 887.
    Lin MJ and Sun CM (2006). Microwave-assisted and traceless synthesis of imidazoquinoxalinones. J Comb Chem 8: 455–458 PubMedCrossRefGoogle Scholar
  888. 888.
    Kim S, Yamamoto K and Hayashi K et al (2008). A cycloalkane-based thermomorphic system for palladium-catalyzed cross-coupling reactions. Tetrahedron 64: 2855–2863 CrossRefGoogle Scholar
  889. 889.
    Zhang W, Chen CHT, Lu Y and Nagashima T (2004). A highly efficient microwave-assisted Suzuki coupling reaction of aryl perfluorooctylsulfonates with boronic acids. Org Lett 6: 1473–1476 PubMedCrossRefGoogle Scholar
  890. 890.
    Zhang W and Chen CHT (2005). Fluorous synthesis of biaryl-substituted proline analogs by 1,3-dipolar cycloaddition and Suzuki coupling reactions. Tetrahedron Lett 46: 1807–1810 PubMedCrossRefGoogle Scholar
  891. 891.
    Kaleta Z, Tarkanyi G and Gomory A et al (2006). Synthesis and application of a fluorous Lawesson’s reagent: convenient chromatography-free product purification. Org Lett 8: 1093–1095 PubMedCrossRef