Molecular Diversity

, 13:241 | Cite as

Combinatorial chemistry: oh what a decade or two can do

  • Walter H. Moos
  • Clarence R. Hurt
  • Guillermo A. Morales


This short commentary takes a stroll through the early days of the field of combinatorial chemistry and molecular diversity. It offers a high-level perspective on the field’s beginnings—and its future—as it relates to journals, books, pioneers, and advances.


Combinatorial chemistry Diversity oriented synthesis Fluorous chemistry Microwave synthesis Molecular diversity Multicomponent reaction New chemical entity Peptoid Solid phase organic chemistry Solid phase organic synthesis 



Absorption, distribution, metabolism, and excretion or elimination


Diversity-oriented synthesis




G-protein-coupled receptor


High-throughput screening


Multicomponent reaction


Molecular weight


New chemical entity




Number of rotatable bonds


Structure–activity relationship


Structure-based drug design


Solid-phase organic chemistry


Solid-phase organic synthesis


  1. 1.
    Geysen HM, Houghten RA, Kauffman S, Lebl M, Moos WH, Pavia MR, Szostak JW (1995) Molecular diversity comes of age. Mol Divers 1: 1–3. doi: 10.1007/BF01715803 CrossRefGoogle Scholar
  2. 2.
    Moos WH, Pavia MR, Kay B, Ellington A (eds) (1997) Annual reports in combinatorial chemistry and molecular diversity, vol 1. ESCOM, Leiden, The NetherlandsGoogle Scholar
  3. 3.
    Pavia MR, Moos WH (eds) (1999) Annual reports in combinatorial chemistry and molecular diversity, vol 2. Kluwer, DordrechtGoogle Scholar
  4. 4.
    Zuckermann RN, Kerr JM, Kent SBH, Moos WH (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J Am Chem Soc 114: 10646–10648. doi: 10.1021/ja00052a076 CrossRefGoogle Scholar
  5. 5.
    Zuckermann RN, Martin EJ, Spellmeyer DC, Stauber GB, Shoemaker KR, Kerr JM, Figliozzi GM, Goff DA, Siani MA, Simon RJ, Banville SC, Brown EG, Wang L, Richter LS, Moos WH (1994) Discovery of nanomolar ligands for 7-transmembrane G-protein coupled receptors from a diverse N-(substituted)glycine peptoid library. J Med Chem 37: 2678–2685. doi: 10.1021/jm00043a007 CrossRefPubMedGoogle Scholar
  6. 6.
    Martin EJ, Blaney JM, Siani MA, Spellmeyer DC, Wong AK, Moos WH (1995) Measuring diversity: Experimental design of combinatorial libraries for drug discovery. J Med Chem 38: 1431–1436. doi: 10.1021/jm00009a003 CrossRefPubMedGoogle Scholar
  7. 7.
    Bunin BA, Ellman JA (1992) A general and expedient method for the solid-phase synthesis of 1,4-benzodiazepine derivatives. J Am Chem Soc 114:10997-10998. See also Bunin BA, Plunkett MJ, Ellman JA (1994) The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc Natl Acad Sci USA 91:4708–4712. doi: 10.1073/pnas.91.11.4708 Google Scholar
  8. 8.
    Furka A (1995) History of combinatorial chemistry. Drug Dev Res 36: 1–12. doi: 10.1002/ddr.430360102 CrossRefGoogle Scholar
  9. 9.
    Geysen HM, Meloen RH, Barteling SJ (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci USA 81: 3998–4002. doi: 10.1073/pnas.81.13.3998 CrossRefPubMedGoogle Scholar
  10. 10.
    Houghten RA (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 82: 5131–5135. doi: 10.1073/pnas.82.15.5131 CrossRefPubMedGoogle Scholar
  11. 11.
    Lebl M (1999) Parallel personal comments on classical papers in combinatorial chemistry. J Comb Chem 1: 3–24. doi: 10.1021/cc9800327 CrossRefPubMedGoogle Scholar
  12. 12.
    DeWitt SH, Kiely JS, Stankovic CJ, Schroeder MC, Cody DMR, Pavia MR (1993) Diversomers: an approach to nonpeptide, nonoligomeric chemical diversity. Proc Natl Acad Sci USA 90: 6909–6913. doi: 10.1073/pnas.90.15.6909 CrossRefPubMedGoogle Scholar
  13. 13.
    Rutter WJ, Santi DV (1991) General method for producing and selecting peptides with specific properties. US Patent 5,010,175, 23 April 1991Google Scholar
  14. 14.
    Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767–773. doi: 10.1126/science.1990438 CrossRefPubMedGoogle Scholar
  15. 15.
    Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kamierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354: 82–84. doi: 10.1038/354082a0 CrossRefPubMedGoogle Scholar
  16. 16.
    Scott JK, Smith GP (1990) Search for peptide ligands with an epitope library. Science 249: 386–390. doi: 10.1126/science.1696028 CrossRefPubMedGoogle Scholar
  17. 17.
    Simon RJ, Kania RS, Zuckermann RN, Huebner VD, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK, Spellmeyer DC, Tan R, Frankel AD, Santi DV, Cohen FE, Bartlett PA (1992) Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci USA 89: 9367–9371. doi: 10.1073/pnas.89.20.9367 CrossRefPubMedGoogle Scholar
  18. 18.
    Balakin KV, Tkachenko SE, Lang SA, Okun I, Ivaschenko AA, Savchuk NP (2002) Property based design of GPCR-targeted library. J Chem Inf Comput Sci 42: 1332–1342. doi: 10.1021/ci025538y PubMedGoogle Scholar
  19. 19.
    Lowrie JF, Delisle RK, Hobbs DW, Diller DJ (2004) The different strategies for designing GPCR and kinase targeted libraries. Comb Chem High Throughput Screen 7: 495–510PubMedGoogle Scholar
  20. 20.
    Müller G (2003) Medicinal chemistry of target family-directed masterkeys. Drug Discov Today 8: 681–691. doi: 10.1016/S1359-6446(03)02781-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Ghose AK, Vishwanadham VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1: 55–68. doi: 10.1021/cc9800071 CrossRefPubMedGoogle Scholar
  22. 22.
    Persidis A (2000) Combinatorial chemistry. Nat Biotechnol 18:IT50–IT52 (Industry trends supplement). doi: 10.1038/80095 Google Scholar
  23. 23.
    Lipinski CA, Lombardo F, Dominy BW, Feeny PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23: 3–25. doi: 10.1016/S0169-409X(96)00423-1 CrossRefGoogle Scholar
  24. 24.
    Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 24: 2615–2623. doi: 10.1021/jm020017n CrossRefGoogle Scholar
  25. 25.
    Brenk R, Schipani A, James D, Gilbert IH, Frearson J, Wyatt PG (2008) Lessons learnt from assembling screening libraries for drug discovery of neglected diseases. Chem Med Chem 3:435–444. Copyright Wiley-VCH Verlag GmgH & Co, KGaA. doi: 10.1002/cmdc.200700139 Google Scholar
  26. 26.
    Sorous DG, Zhang J, Zhang L, Wang Z, Tepper MA (2006) Kinase inhibitor recognition by use of a multivariable QSAR model. J Mol Graph Model 24: 278–295. doi: 10.1016/j.jmgm.2005.09.004 CrossRefGoogle Scholar
  27. 27.
    Habashita H, Kokubo M, Hamano S-I, Hamanaka N, Toda M, Shibayama S, Tada H, Sagawa K, Fukushima D, Maeda K, Mitsuya H (2006) Design, synthesis, and biological evaluation of the combinatorial library with a new spirodiketopiperazine scaffold. Discovery of novel potent and selective low-molecular-weight CCR 5(antagonists. J Med Chem 49): 4140–4152. doi: 10.1021/jm060051s Google Scholar
  28. 28.
    Nishizawa R, Nishiyama T, Hisaichi K, Matsunaga N, Minamoto C, Habashita H, Takaoka Y, Toda M, Shibayama S, Tada H, Sagawa K, Fukushima D, Maeda K, Mitsuya H (2007) Spirodiketopiperazine-based CCR5 antagonists: Lead optimization from biologically active metabolite. Bioorg Med Chem Lett 17: 727–731. doi: 10.1016/j.bmcl.2006.10.084 CrossRefPubMedGoogle Scholar
  29. 29.
    Liddle J, Allen MJ, Borthwick AD, Brooks DP, Davies DE, Edwards RM, Exall AM, Hamlett C, Irving WR, Mason AM, McCafferty GP, Nerozzi F, Peace S, Philp J, Pollard D, Pullen MA, Shabbir SS, Sollis SL, Westfall TD, Woollard PM, Wu C, Hickey DM (2008) The discovery of GSK221149A: A potent and selective oxytocin antagonist. Bioorg Med Chem Lett 18: 90–94. doi: 10.1016/j.bmcl.2007.11.008 CrossRefPubMedGoogle Scholar
  30. 30.
    Hulme C, Gore V (2003) Multi-component reactions: emerging chemistry in drug discovery from xylocain to crixivan. Curr Med Chem 10: 51–80. doi: 10.2174/0929867033368600 CrossRefPubMedGoogle Scholar
  31. 31.
    Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27: 279–282. doi: 10.1016/S0040-4039(00)83996-9 CrossRefGoogle Scholar
  32. 32.
    Studer A, Hadida S, Ferritto R, Kim S-Y, Jeger P, Wipf P, Curran DP (1997) Fluorous synthesis: A fluorous-phase strategy for improving separation efficiency in organic synthesis. Science 275: 823–826. doi: 10.1126/science.275.5301.823 CrossRefPubMedGoogle Scholar
  33. 33.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed 40: 2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CrossRefGoogle Scholar
  34. 34.
    Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287: 1964–1969. doi: 10.1126/science.287.5460.1964 CrossRefPubMedGoogle Scholar
  35. 35.
    Salimi-Moosavi H, Tang T, Harrison DJ (1997) Electroosmotic pumping of organic solvents and reagents in microfabricated reactor chips. J Am Chem Soc 119: 8716–8717. doi: 10.1021/ja971735f CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Walter H. Moos
    • 1
    • 2
  • Clarence R. Hurt
    • 3
  • Guillermo A. Morales
    • 4
  1. 1.SRI InternationalMenlo ParkUSA
  2. 2.University of CaliforniaSan FranciscoUSA
  3. 3.Prosetta Bioconformatics, Inc.San FranciscoUSA
  4. 4.Semafore Pharmaceuticals, Inc.IndianapolisUSA

Personalised recommendations