Advertisement

Molecular Diversity

, Volume 13, Issue 3, pp 385–387 | Cite as

Organic synthesis in water: a green protocol for the synthesis of 2-(cyclohexylamino)-3- aryl- indeno[1,2-b]furan-4-ones

  • Majid M. Heravi
  • Bita Baghernejad
  • Hossein A. Oskooie
Short Communication

Abstract

Aldehydes, 1,3-indandione and cyclohexylisocyanide undergo smooth coupling-cyclization in water to produce the corresponding 2-(cyclohexylamino)-3-aryl- indeno [1,2-b] furan-4-ones in good yields. Water was used as a solvent to avoid the use of other highly toxic and environmentally unfavorable solvents for this synthesis.

Keywords

Cyclohexylisocyanide 1,3-Indandione One-pot Three-component reaction 

Graphical Abstract

A simple and efficient synthesis of 2-(cyclohexylamino)-3-aryl- indeno[1,2-b]furan-4-ones was achieved via a one-pot three-component reaction of cyclohexylisocyanide, aldehydes, and 1,3-indandione in water for 5 h in good yields. zFX

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dean FM (1982) Preface. In: Katritzky AR (eds) Advances in heterocyclic chemistry, vol. 30. Academic, New York, pp 167–238CrossRefGoogle Scholar
  2. 2.
    Lipshutz BH (1986) Oxazoles in carboxylate protection and activation. Chem Rev 86: 795–822. doi: 10.1021/cr00075a005 CrossRefGoogle Scholar
  3. 3.
    Nakanishi K (1974) The atomic reconstruction of metabolism (ARM). In: Nakanishi K (eds) Natural products chemistry. Kodansha, TokyoGoogle Scholar
  4. 4.
    Schulte G, Scheuer PJ, McConnel OJ (1980) Two furanosesquiterpene marine metabolites with antifeedant properties. Helv Chim Acta 63: 2159–2163. doi: 10.1002/hlca.19800630805 CrossRefGoogle Scholar
  5. 5.
    Chattejee A, Banerjee S (1970) Synthesis of 4-methyl-5-methoxyindan-1-one. Tetrahedron 26: 2599–2601. doi: 10.1016/S0040-4020(01)92834-0 CrossRefGoogle Scholar
  6. 6.
    Aleaao EN, Tombari DG, Ibanez AF, Moltrasio Idesias G, Martens H, Hoornaert G (1972) A new synthetic route to selected indenones. Synth Commun 2: 147–150. doi: 10.1080/00397917208081757 CrossRefGoogle Scholar
  7. 7.
    Anstead GM, Ensign JL, Peterson CS, Katzenellenbogen JA (1989) 2-Arylindenes and 2-arylindenones. Synthesis of probes to study the binding orientation of unsymmetrical nonsteroidal ligands to the estrogen receptor. J Org Chem 54: 1485–1487. doi: 10.1021/jo00268a003 Google Scholar
  8. 8.
    Nagaraja GK, Prakash GK, Kumaraswamy MN, Vaidya VP, Mahadevan KM (2006) Synthesis of novel nitrogen containing naphtho[2,1-b]furan derivatives and investigation of their anti microbial activities. ARKIVOC XV: 160–168Google Scholar
  9. 9.
    Yavari I, Adib M, Sayahi MH (2002) An efficient diastereoselective one-pot synthesis of dihydro [2′,3′:2,3] indeno [2,1-b] furan derivatives. Tetrahedron Lett 43: 2927–2929. doi: 10.1016/S0040-4039(02)00435-5 CrossRefGoogle Scholar
  10. 10.
    Zhang SW, Sugioka T, Takahashi SJ (1999) Rhodium-catalyzed carbonylation of alkynes having a carbonyl group adjacent to carbon–carbon triple bond under water–gas shift reaction conditions. Mol Catal A Chem 143: 211–228. doi: 10.1016/S1381-1169(98)00389-6 CrossRefGoogle Scholar
  11. 11.
    Azizian J, Karimi AR, Arefrad H, Mohammadi AA, Mohammadizadeh MR (2003) A novel one-pot, four component synthesis of some densely functionalized pyrroles. Mol Divers 6: 223–226. doi: 10.1023/B:MODI.0000006779.13561.12 PubMedCrossRefGoogle Scholar
  12. 12.
    Li CJ, Chan TH (1997) Organic reactions in aqueous media. Wiley, New YorkGoogle Scholar
  13. 13.
    Grieco PA (ed) (1998) Organic synthesis in water. Thomson Science Glasgow, ScotlandGoogle Scholar
  14. 14.
    Li CJ (2005) Organic reaction in aqueous media with a focus on carbon–carbon bond formations: a decade update. Chem Rev 105: 3095–3166. doi: 10.1021/cr030009u PubMedCrossRefGoogle Scholar
  15. 15.
    Breslow R (1991) Hydrophobic effects on simple organic reactions in water. Acc Chem Res 24: 159–164. doi: 10.1021/ar00006a001 CrossRefGoogle Scholar
  16. 16.
    Breslow R (2004) Determining the geometries of transition states by use of antihydrophobic additives in water. Acc Chem Res 37: 471–478. doi: 10.1021/ar040001m PubMedCrossRefGoogle Scholar
  17. 17.
    Domling A (2006) Recent developments in isocyanides based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi: 0.1021/cr0505728 PubMedCrossRefGoogle Scholar
  18. 18.
    Domling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39: 3168–3210. doi: 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Majid M. Heravi
    • 1
  • Bita Baghernejad
    • 1
  • Hossein A. Oskooie
    • 1
  1. 1.Department of ChemistrySchool of Science, Azzahra UniversityTehranIran

Personalised recommendations