Molecular Diversity

, Volume 10, Issue 4, pp 511–514

Molecular diversity of proteins in biological offense and defense systems

Guest Editorial

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kriventseva E.V., Koch I., Apweiler R., Vingron M., Bork P., Gelfand M.S., Sunyaev S., Increase of functional diversity by alternative splicing, Trends Genet., 19 (2003) 124–128CrossRefGoogle Scholar
  2. 2.
    Su Z., Wang J., Yu J., Huang X., Gu X., Evolution of alternative splicing after gene duplication, Genome Res., 16 (2006)182–189CrossRefGoogle Scholar
  3. 3.
    Fitch W.M., Bush R.M., Bender C.A., Cox N.J., Long term trends in the evolution of H(3) HA1 human influenza type A, Proc. Natl. Acad. Sci. USA, 94 (1997) 7712–7718CrossRefGoogle Scholar
  4. 4.
    Endo T., Ikeo K., Gojobori T., Large-scale search for genes on which positive selection may operate, Mol. Biol. Evol., 13 (1996) 685–690Google Scholar
  5. 5.
    Baric R.S., Yount B., Hensley L., Peel S.A., Chen W.l., Episodic evolution mediates interspecific transfer of a murine coronavirus, J. Virol., 71 (1997) 1946–1955Google Scholar
  6. 6.
    Wu J.C., Chiang T.Y., Shiue W.K., Wang S.Y., Sheen I.J., Huang Y.H., Syuet W.J., Recombination of hepatitis D virus RNA sequences and its implications, Mol. Biol. Evol., 16 (1999) 1622Gȴ1632Google Scholar
  7. 7.
    Smith N.H., Maynard Smith J., Spratt B.G., Sequence evolution of the porBgene of Neisseria gonorrhoeae and Neisseria meningitidis: evidence for positive Darwinian selection, Mol. Biol. Evol., 12 (1995) 363Gȴ370Google Scholar
  8. 8.
    Hughes M.K., Hughes A.L., Natural selection on Plasmodium surface proteins, Mol. Biochem. Parasitol., 71 (1995) 99–113CrossRefGoogle Scholar
  9. 9.
    Weinreich D.M., Delaney N.F., DePristo M.A., Hartl D.L., Darwinian evolution can follow only very few mutational paths to fitter proteins, Science, 312 (2006) 111–114CrossRefGoogle Scholar
  10. 10.
    Riley M.A., Positive selection for colicin diversity in bacteria, Mol. Biol. Evol. 10, (1993) 1048–1059Google Scholar
  11. 11.
    Duda T.F., Jr. Palumbi S.R., Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus, Proc. Natl. Acad. Sci. USA, 96 (1999) 6820–6823CrossRefGoogle Scholar
  12. 12.
    Duda T.F., Jr., Palumbi S.R., Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails, Mol. Biol. Evol., 17 (2000) 1286–1293Google Scholar
  13. 13.
    Conticello S.G., Gilad Y., Avidan N., Ben-Asher E., Levy Z., Fainzilber M., Mechanisms for evolving hypervariability: the case for conopeptides, Mol. Biol. Evol., 18 (2001) 120–131Google Scholar
  14. 14.
    Olivera B.M., Walker C., Cartier G.E., Hooper D., Santos A.D., Schoenfeld R., Shetty R., Watkins M., Bandyopadhyay P., Hillyard D.R., Speciation of cone snails and interspecific hyperdivergence of their venom peptides: potential evolutionary significance of introns, Ann. N.Y. Acad. Sci., 870 (1999) 223–237CrossRefGoogle Scholar
  15. 15.
    Nakashima K., Ogawa T., Oda N., Hattori M., Sakaki Y., Kihara H., Ohno M., Accelerated evolution of Trimeresurus flavoviridis venom gland phospholipase A isozymes2, Proc. Natl. Acad. Sci. USA, 90 (1993) 5964–5968CrossRefGoogle Scholar
  16. 16.
    Nakashima K., Nobuhisa I., Deshimaru M., Nakai M., Ogawa T., Shimohigashi Y., Fukumaki Y., Hattori M., Sakaki Y., Hattori S., Ohno M., Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A 2 isozyme genes, Proc. Natl. Acad. Sci. USA, 92 (1995) 5605–5609CrossRefGoogle Scholar
  17. 17.
    Deshimaru M., Ogawa T., Nakashima K., Nobuhisa I., Chijiwa T., Shimohigashi Y., Fukumaki Y., Niwa M., Yamashina I., Hattori S., Ohno M., Accelerated evolution of crotalinae snake venom gland serine proteases, FEBS Lett., 397(1996) 83–88CrossRefGoogle Scholar
  18. 18.
    Calvetea J. J., Marcinkiewiczb C., Monleónc D., Esteveac V., Celdaçd B., Juáreza P., Libia Sanz L., Snake venom disintegrins: evolution of structure and function, Toxicon 45 (2005) 1063–1074CrossRefGoogle Scholar
  19. 19.
    Ohno M., Menez R., Ogawa T., Danse J.M., Shimohigashi Y., Fromen C., Ducancel F., Zinn-Justin S., Le Du M.H., Boulain J.C., Tamiya T., Menez A., Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog. Nucleic Acids Res. Mol. Biol., 59 (1998) 307–364Google Scholar
  20. 20.
    Ogawa T., Chijiwa T., Oda-Ueda N., Ohno M., Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom, Toxicon, 45 (2005) 1–14CrossRefGoogle Scholar
  21. 21.
    Froy O., Sagiv T., Poreh M., Urbach D., Zilberberg N., Gurevitz M., Dynamic diversification from a putative common ancestor of scorpion toxins affecting sodium, potassium, and chloride channels, J. Mol. Evol., 48 (1999) 187–196CrossRefGoogle Scholar
  22. 22.
    Zhu S., Bosmans F., Tytgat J., Adaptive evolution of scorpion sodium channel toxins, J. Mol. Evol., 58 (2004) 145–153CrossRefGoogle Scholar
  23. 23.
    Cao Z., Mao X., Xu X., Sheng J., Dai C., Wu Y., Luo F., Sha Y., Jiang D., Li W., Adaptive evolution after gene duplication in alpha-KT x 14 subfamily from Buthus martensii Karsch., IUBMB Life., 57 (2005) 513–521CrossRefGoogle Scholar
  24. 24.
    Escoubas P., Diochot S., Corzo G., Structure and pharmacology of spider venom neurotoxins, Biochimie, 82 (2000) 893–907CrossRefGoogle Scholar
  25. 25.
    Tanaka T., Nei M., Positive darwinian selection observed at the variable-region genes of immunoglobulins, Mol. Biol. Evol., 6 (1989) 447–459Google Scholar
  26. 26.
    Hughes A.L., Nei M., Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection, Nature, 335 (1988) 167–170CrossRefGoogle Scholar
  27. 27.
    Goodwin R.L., Baumann H., Berger F.G., Patterns of divergence during evolution of α1-proteinase inhibitors in mammals, Mol. Biol. Evol., 13 (1996) 346–358Google Scholar
  28. 28.
    Tamechika I., Itakura M., Saruta Y., Furukawa M., Kato A., Tachibana S., Hirose S., Accelerated evolution in inhibitor domains of porcine elafin family members, J. Biol. Chem., 271 (1996) 7012–7018CrossRefGoogle Scholar
  29. 29.
    Stotz H.U., Bishop J.G., Bergmann C.W., Koch M., Albersheim P., Darvill A.G, Labavitchet J.M., Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors, Mol. Physiol. Plant Pathol., 56 (2000) 117Gȴ130CrossRefGoogle Scholar
  30. 30.
    Hughes A.L., The evolution of the type I interferon family in mammals, J. Mol. Evol., 41 (1995) 539–548CrossRefGoogle Scholar
  31. 31.
    Nobuhisa I., Deshimaru M., Chijiwa T., Nakashima K., Ogawa T., Shimohigashi Y., Fukumaki Y., Hattori S., Kihara H., Ohno M., Structures of genes encoding phospholipase A2 inhibitors from the serum of Trimeresurus flavoviridis snake, Gene, 191 (1997) 31–37CrossRefGoogle Scholar
  32. 32.
    Angata T., Margulies E.H., Green E.D., Varki A., Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms, Proc. Natl. Acad. Sci. USA, 101 (2004) 13251–13256CrossRefGoogle Scholar
  33. 33.
    Bishop J.G., Dean A.M., Mitchell-Olds T., Rapid evolution in plant chitinases: molecular targets of selection in plant–pathogen coevolution, Proc. Natl. Acad. Sci. USA, 97 (2000) 5322–5327CrossRefGoogle Scholar
  34. 34.
    Ogawa T., Ishii C., Kagawa D., Muramoto K., Kamiya H., Accelerated evolution in the protein-coding region of galectin cDNAs, congerin I and congerin II, from skin mucus of conger eel (Conger myriaster), Biosci. Biotechnol. Biochem., 63 (1999) 1203–1208CrossRefGoogle Scholar
  35. 35.
    Ogawa T., Shirai T., Shionyu-Mitsuyama C., Yamane T., Kamiya H., Muramoto K., The speciation of conger eel galectins by rapid adaptive evolution, Glycoconj. J., 19 (2004) 451–458CrossRefGoogle Scholar
  36. 36.
    Ford M.J., Molecular evolution of transferrin: evidence for positive selection in salmonids, Mol. Biol. Evol., 18 (2001) 639–47Google Scholar
  37. 37.
    Semple C.A., Rolfe M., Dorin J.R., Duplication and selection in the evolution of primate beta-defensin genes, Genome Biol., 4 (2003) R31CrossRefGoogle Scholar
  38. 38.
    Lynn D.J., Lloyd A.T., Fares M.A., O’Farrelly C., Evidence of positively selected sites in mammalian alpha-defensins, Mol. Biol. Evol., 21 (2004) 819–827CrossRefGoogle Scholar
  39. 39.
    Kitano, T. and Saitou, N., Evolution of Rh blood group genes have experienced gene conversions and positive selection, J. Mol. Evol., 49 (1995)615–626Google Scholar
  40. 40.
    Zhang J., Rosenberg H.F., Nei M., Positive darwinian selection after gene duplication in primate ribonuclease genes, Proc. Natl. Acad. Sci. USA, 95 (1998) 3708–3713CrossRefGoogle Scholar
  41. 41.
    Zhang J., Zhang Y.P., Rosenberg H.F., Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey, Nat. Genet., 30 (2002) 411–415CrossRefGoogle Scholar
  42. 42.
    OhAinle M., Kerns J.A., Malik H.S., Emerman M., Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H, J. Virol., 80 (2006) 3853–3862CrossRefGoogle Scholar
  43. 43.
    Vacquier V.D., Swanson W.J., Lee Y.H., Positive darwinian selection on two homologous fertilization proteins: what is the selective pressure driving their divergence? J. Mol. Evol., 44 (1997) 15–22CrossRefGoogle Scholar
  44. 44.
    Hellberg M.E., Moy G.W., Vacquier V.D., Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein, Mol. Biol. Evol., 17 (2000) 458–466Google Scholar
  45. 45.
    Galindo B.E., Vacquier V.D., Swanson W.J., Positive selection in the egg receptor for abalone sperm lysine, Proc. Natl. Acad. Sci. USA, 100 (2003) 4639–4643CrossRefGoogle Scholar
  46. 46.
    McCartney M.A., Lessios H.A., Adaptive evolution of sperm bindin tracks egg incompatibility in neotropical sea urchins of the genus Echinometra, Mol. Biol. Evol., 21 (2004) 732–745CrossRefGoogle Scholar
  47. 47.
    Mah S.A., Swanson W.J., Vacquier V.D., Positive selection in the carbohydrate recognition domains of sea urchin sperm receptor for egg jelly (suREJ) proteins, Mol. Biol. Evol., 22 (2005) 533–541CrossRefGoogle Scholar
  48. 48.
    Rooney A.P., Zhang J., Rapid evolution of a primate sperm protein: relaxation of functional constraint or positive darwinian selection? Mol. Biol. Evol. 16 (1999) 706–710Google Scholar
  49. 49.
    Turner, L.M. and Hoekstra, H.E., Adaptive evolution of fertilization proteins within a genus: Variation in ZP2 and ZP3 in Deer Mice (Peromyscus), Mol. Biol. Evol., 23 (2006) 1656–1669Google Scholar
  50. 50.
    Ishimizu T., Endo T., Yamaguchi-Kabata Y., Nakamura K.T., Sakiyama F., Norioka S., Identification of regions in which positive selection may operate in S-RNase of Rosaceae: implications for S-allele-specific recognition sites in S-Rnase, FEBS Lett., 440 (1998) 337–342CrossRefGoogle Scholar
  51. 51.
    Tsaur S.C., Wu C-I., Positive selection and the molecular evolution of a gene of male reproduction, Acp26Aa of Drosophila, Mol. Biol. Evol., 14 (1997) 544–549Google Scholar
  52. 52.
    Karn R.C., Nachman M.W., Reduced nucleotide variability at an androgen-binding protein locus (Abpa) in house mice: evidence for positive natural selection, Mol. Biol. Evol., 16 (1999) 1192–1197Google Scholar
  53. 53.
    Pamilo P., O’Neill R.W., Evolution of Sry genes, Mol. Biol. Evol., 14 (1997) 49–55Google Scholar
  54. 54.
    Ting C.T., Tsaur S.C., Wu M.L., Wu C.I., A rapidly evolving homeobox at the site of a hybrid sterility gene, Science, 282 (1998) 1501–1504CrossRefGoogle Scholar
  55. 55.
    Sutton K.A., Wilkinson M.F., Rapid evolution of a homeodomain: evidence for positive selection, J. Mol. Evol., 45 (1997) 579–588CrossRefGoogle Scholar
  56. 56.
    Frankel N., Hasson E., Iusem N.D., Rossi M.S., Adaptive evolution of the water stress-induced gene Asr2 in Lycopersicon species dwelling in arid habitats, Mol. Biol. Evol. 20 (2003) 1955–1962CrossRefGoogle Scholar
  57. 57.
    O’Connell M.J., McInerney J.O., Adaptive evolution of the human fatty acid synthase gene: support for the cancer selection and fat utilization hypotheses? Gene, 360 (2005) 151–159CrossRefGoogle Scholar
  58. 58.
    Baudry E., Desmadril M., Werren J.H., Rapid adaptive evolution of the tumor suppressor gene pten in an insect lineage, J. Mol. Evol., 62 (2006) 738–744CrossRefGoogle Scholar
  59. 59.
    Yang Z., Bielawski J.P., Statistical methods for detecting molecular adaptation, TREE,15 (2000) 496–503Google Scholar
  60. 60.
    Swanson W.J., Adaptive evolution of genes and gene families, Curr. Opin. Genet. Develop., 13 (2003) 617–622CrossRefGoogle Scholar
  61. 61.
    Swanson W.J., Vacquier V.D., The rapid evolution of reproductive proteins, Nat. Rev. Genet., 3 (2002) 137–144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Biomolecular Science, Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations