Advertisement

Molecular Diversity

, Volume 10, Issue 3, pp 389–403 | Cite as

Managing, profiling and analyzing a library of 2.6 million compounds gathered from 32 chemical providers

  • Aurélien Monge
  • Alban Arrault
  • Christophe Marot
  • Luc Morin-Allory
Full–length paper

Summary

The data for 3.8 million compounds from structural databases of 32 providers were gathered and stored in a single chemical database. Duplicates are removed using the IUPAC International Chemical Identifier. After this, 2.6 million compounds remain. Each database and the final one were studied in term of uniqueness, diversity, frameworks, ‘drug-like’ and ‘lead–like’ properties. This study also shows that there are more than 87 000 frameworks in the database. It contains 2.1 million ‘drug-like’ molecules among which, more than one million are ‘lead-like’. This study has been carried out using ‘ScreeningAssistant’, a software dedicated to chemical databases management and screening sets generation. Compounds are stored in a MySQL database and all the operations on this database are carried out by Java code. The druglikeness and leadlikeness are estimated with ‘in–house’ scores using functions to estimate convenience to properties; unicity using the InChI code and diversity using molecular frameworks and fingerprints. The software has been conceived in order to facilitate the update of the database. ‘ScreeningAssistant’ is freely available under the GPL license.

Key words

chemical databases chemoinformatics diversity drug-like lead-like screening 

Abbreviations

HBA

H bond acceptor

HBD

H bond donor

HTS

high-throughput screening

InChI

IUPAC International Chemical Identifier

JNI

Java Native Interface

MW

molecular weight

RO5

rule-of-five

SCA

stochastic clustering analysis

SSSR

smallest set of smallest rings

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradley, M.P., An overview of the diversity represented in commercially-available databases, J. Comput. Aided Mol. Des., 16 (2002) 299–300.CrossRefGoogle Scholar
  2. 2.
    Mozziconacci, J.C., Arnoult, E., Baurin, N., Marot, C. and Morin-Allory, L., Preparation of a molecular database from a set of 2 million compounds for virtual screening applications : Gathering, structural analysis and filtering, 9th Electronic Computational Chemistry Conference, World Wide Web, March (2003).Google Scholar
  3. 3.
    Sirois, S., Hatzakis, G., Wei, D., Du, Q., Chou, K.C., Assessment of chemical libraries for their druggability, Comput. Biol. Chem., 29 (2005) 55–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Baurin, N., Baker, R., Richardson, C., Chen, I., Foloppe, N., Potter, A., Jordan, A., Roughley, S., Parratt, M., Greaney, P., Morley, D. and Hubbard, R.E., Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds, J. Chem. Inf. Comput. Sci., 44 (2004) 643–657.PubMedCrossRefGoogle Scholar
  5. 5.
    Cummins, D.J., Andrews, C.W., Bentley, J.A. and Cory, M., Molecular diversity in chemical databases: Comparison of medicinal chemistry knowledge bases and databases of commercially available compounds, J. Chem. Inf. Comput. Sci., 36 (1996) 750–763.PubMedCrossRefGoogle Scholar
  6. 6.
    Voigt, J.H., Bienfait, B., Wang, S. and Nicklaus, M.C., Comparison of the NCI open database with seven large chemical structural databases, J. Chem. Inf. Comput. Sci., 41 (2001) 702–712.PubMedCrossRefGoogle Scholar
  7. 7.
    Monge, A., Screening assistant, http://screenassistant.sourceforge.net/
  8. 8.
    Wegner, J.K., JOELib, http://joelib.sourceforge.net
  9. 9.
    Corina. Molecular Networks GmbH. http://www.mol-net.com
  10. 10.
    The IUPAC International Chemical Identifier Project, http://www.iupac.org/inchi/
  11. 11.
    Murray-Rust, P., Rzepa, H.S., Stewart, J.J., Zhang, Y., A global resource for computational chemistry, J. Mol. Model., 11 (2005) 532–541.PubMedCrossRefGoogle Scholar
  12. 12.
    Coles, S.J., Day, N.E., Murray-Rust, P., Rzepa, H.S. and Zhang, Y., Enhancement of the chemical semantic web through the use of InChI identifiers, Org. Biomol. Chem., 3 (2005) 1832–1834.PubMedCrossRefGoogle Scholar
  13. 13.
    Prasanna, M.D., Vondrasek, J., Wlodawer, A. and Bhat, T.N., Application of InChI to curate, index, and query 3-D structures, Proteins, 60 (2005) 1–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Molecular Operating Environment (MOE), Chemical Computing, http://www.chemcomp.com
  15. 15.
    OEChem, OpenEye Scientific Software, http://www.eyesopen.com
  16. 16.
    Marvin, ChemAxon. http://www.chemaxon.com
  17. 17.
    Groupement De Service Chimiothèque Nationale, http://chimiotheque-nationale.enscm.fr
  18. 18.
    Reynolds, C.H., Druker, R. and Pfahle, L.B., Lead discovery using stochastic cluster analysis (SCA): A new method for clustering structurally similar compounds, J. Chem. Inf. Comput. Sci., 38 (1998) 305–312.CrossRefGoogle Scholar
  19. 19.
    Xue, L., Godden, J.W. and Bajorath, J., Database searching for compounds with similar biological activity using short binary bit string representations of molecules, J. Chem. Inf. Comput. Sci., 39 (1999) 881–886.PubMedCrossRefGoogle Scholar
  20. 20.
    Bemis, G.W. and Murcko, M.A., The properties of known drugs. 1. Molecular frameworks, J. Med. Chem., 39 (1996) 2887–2893.PubMedCrossRefGoogle Scholar
  21. 21.
    Lajiness, M.S., Vieth, M. and Erickson, J., Molecular properties that influence oral drug-like behavior, Curr. Opin. Drug Discov. Devel., 7 (2004) 470–477.PubMedGoogle Scholar
  22. 22.
    Walters, W.P. and Murcko, M.A., Prediction of ‘drug-likeness’, Adv. Drug Delivery Rev., 54 (2002) 255–271.CrossRefGoogle Scholar
  23. 23.
    Clark, D.E., Pickett, S.D., Computational methods for the prediction of ‘druglikeness’, Drug Discov. Today, 5 (2000), 49–58.PubMedCrossRefGoogle Scholar
  24. 24.
    Muegge, I., Selection criteria for drug-like compounds, Med. Res. Rev., 23 (2003) 302–321.PubMedCrossRefGoogle Scholar
  25. 25.
    Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 23 (1997) 3–25.CrossRefGoogle Scholar
  26. 26.
    Lipinski, C.A., Lead- and drug-like compounds: The rule-of-five revolution, Drug Discov. Today, 1 (2004) 337–341.Google Scholar
  27. 27.
    Frimurer, T.M., Bywater, R., Nærum, L., Lauritsen, L.N. and Brunak, S., Improving the odds in discriminating “drug-like” from “non drug-like” compounds, J. Chem. Inf. Comput. Sci., 40 (2000), 1315–1324.PubMedCrossRefGoogle Scholar
  28. 28.
    Oprea, T.I., Property distribution of drug-related chemical databases, J. Comput. Aided Mol. Des., 14 (2000) 251–264.PubMedCrossRefGoogle Scholar
  29. 29.
    Xu, J., Stevenson, J., Drug-like index: A new approach to measure drug-like compounds and their diversity, J. Chem. Inf. Comput. Sci., 40 (2000) 1177–1187.PubMedCrossRefGoogle Scholar
  30. 30.
    Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., Kopple, K.D., Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem., 45 (2002) 2615–2623.PubMedCrossRefGoogle Scholar
  31. 31.
    Zheng, S., Luo, X., Chen, G., Zhu, W., Shen, J., Chen, K. and Jiang, H., A new rapid and effective chemistry space filter in recognizing a druglike database, J. Chem. Inf. Comput. Sci., 45 (2005) 856–862.Google Scholar
  32. 32.
    Muegge, I., Heald, S.L. and Brittelli, D., Simple selection criteria for drug-like chemical matter, J. Med. Chem., 44 (2001) 1841–1846.PubMedCrossRefGoogle Scholar
  33. 33.
    Zernov, V.V., Balakin, K.V., Ivaschenko, A.A., Savchuk, N.P. and Pletnev, I.V., Drug Discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions, J. Chem. Inf. Comput. Sci., 43 (2003), 2048–2056.PubMedCrossRefGoogle Scholar
  34. 34.
    Ajay, A., Walters, W.P. and Murcko, M.A., Can we learn to distinguish between “drug-like” and “nondrug-like” molecules?, J. Med. Chem., 41 (1998) 3314–3324.PubMedCrossRefGoogle Scholar
  35. 35.
    Sadowski, J. and Kubinyi, H., A scoring scheme for discriminating between drugs and nondrugs, J. Med. Chem., 41 (1998) 3325–3329.PubMedCrossRefGoogle Scholar
  36. 36.
    Charifson, P.S. and Walters, W.P., Filtering databases and chemical libraries, J. Comput. Aided Mol. Des., 16 (2002) 311–323.PubMedCrossRefGoogle Scholar
  37. 37.
    Rishton, G.M., Reactive compounds and in vitro false positives in HTS, Drug Discov. Today, 2 (1997) 382–384.CrossRefGoogle Scholar
  38. 38.
    Wildman, S.A. and Crippen, G.M., Prediction of physicochemical parameters by atomic contributions, J. Chem. Inf. Comput. Sci., 39 (1999) 868–873.CrossRefGoogle Scholar
  39. 39.
    Hann, M.M., Leach, A.R. and Harper, G., Molecular complexity and its impact on the probability of finding leads for drug discovery, J. Chem. Inf. Comput. Sci., 41 (2001) 856–864.PubMedCrossRefGoogle Scholar
  40. 40.
    Oprea, T.I., Current trends in lead discovery: Are we looking for the appropriate properties?, J. Comput. Aided Mol. Des., 16 (2002) 325–334.PubMedCrossRefGoogle Scholar
  41. 41.
    Davis, A.M., Teague, S.J. and Kleywegt, G.J., Application and limitations of X-ray crystallographic data in structure-based ligand and drug design, J. Chem. Inf. Comput. Sci., 42 (2003) 2718–2736.Google Scholar
  42. 42.
    Hann, M.M. and Oprea, T.I., Pursuing the leadlikeness concept in pharmaceutical research, Curr. Opin. Chem. Biol., 8 (2004) 255–263.PubMedCrossRefGoogle Scholar
  43. 43.
    Wenlock, M.C., Austin, R.P., Barton, P., Davis, A.M. and Leeson P.D., A comparison of physiochemical property profiles of development and marketed oral drugs, J. Med. Chem., 46 (2003) 1250–1256.PubMedCrossRefGoogle Scholar
  44. 44.
    Hou, T.J., Xia, K., Zhang, W. and Xu, X.J., ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach, J. Chem. Inf. Comput. Sci., 44 (2004) 266–275.PubMedCrossRefGoogle Scholar
  45. 45.
    Ertl, P., Rohde, B. and Selzer, P., Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem., 43 (2000) 3714–3717.PubMedCrossRefGoogle Scholar
  46. 46.
    Palm, K., Stenberg, P., Luthman, K. and Artursson, P., Polar molecular surface properties predict the intestinal absorption of drugs in humans, Pharm. Res., 14 (1997) 568–571.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Aurélien Monge
    • 1
  • Alban Arrault
    • 1
  • Christophe Marot
    • 1
  • Luc Morin-Allory
    • 1
  1. 1.Institut de Chimie Organique et Analytique, UMR CNRS 6005Université d’OrléansOrléans Cedex 2France

Personalised recommendations