Molecular Diversity

, Volume 10, Issue 4, pp 585–597

The RNase a superfamily: Generation of diversity and innate host defense

Review

Summary

The Ribonuclease A superfamily includes an extensive network of distinct and divergent gene lineages. Although all ribonucleases of this superfamily share invariant structural and catalytic elements and some degree of enzymatic activity, the primary sequences have diverged significantly, ostensibly to promote novel function. We will review the literature on the evolution and biology of the RNase A ribonuclease lineages that have been characterized specifically as involved in host defense including: (1) RNases 2 and RNases 3, also known as the eosinophil ribonucleases, which are rapidly-evolving cationic proteins released from eosinophilic leukocytes, (2) RNase 7, an anti-pathogen ribonuclease identified in human skin, and (3) RNase 5, also known as angiogenin, another rapidly-evolving ribonuclease known to promote blood vessel growth with recently-discovered antibacterial activity. Interestingly, some of the characterized anti-pathogen activities do not depend on ribonuclease activity per se. We discuss the ways in which the anti-pathogen activities characterized in vitro might translate into experimental confirmation in vivo. We will also consider the possibility that other ribonucleases, such as the dimeric bovine seminal ribonuclease and the frog oocyte ribonucleases, may have host defense functions and therapeutic value that remain to be explored. (190 words)

Keywords

angiogenin antibacterial antiviral antihelminth cytotoxin eosinophils 

Abbreviations:

RNase

ribonuclease

EDN

eosinophl-derived neurotoxin

ECP

eosinophil cationic protein

RSV

respiratory syncytial virus

Ang

angiogenin

BS-RNase

bovine seminal ribonuclease

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirs, C.H.W., Moore, S. and Stein, W.H., A chromatographic investigation of pancreatic ribonuclease, J. Biol. Chem., 200 (1953) 493–506.Google Scholar
  2. 2.
    Anfinsen, C.B., Part I. Crystalline pancreatic ribonuclease. Introductory remarks, Ann. N.Y. Acad. Sci., 81 (1959) 513–514.Google Scholar
  3. 3.
    Crestfield, A.M., Stein, W.H. and Moore, S., On the preparation of bovine pancreatic Ribonuclease A, J. Biol. Chem., 238 (1963) 618–621.Google Scholar
  4. 4.
    Smyth, D.G., Stein, W.H. and Moore, S., The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations, J. Biol. Chem., 238 (1963) 227–234.Google Scholar
  5. 5.
    Hantgan, R.R., Hammes, G.G. and Scheraga, H.A., Pathways of folding of reduced bovine pancreatic ribonuclease, Biochemistry, 13 (1974) 3421–1331.Google Scholar
  6. 6.
    Scheraga, H.A., Structural studies of pancreatic ribonuclease, Fed. Proc., 26 (1967) 1380–1387.Google Scholar
  7. 7.
    Beers, R.F. Jr., Hydroysis of polyadenylic acid by pancreatic ribonuclease, J. Biol. Chem., 235 (1960) 2393–2398.Google Scholar
  8. 8.
    Walter, B. and Wold, F., The role of lysine in the action of bovine pancreatic Ribonuclease A, Biochemistry, 15 (1976) 304–310.Google Scholar
  9. 9.
    Roth, J.S., Ribonuclease activity and cancer: a review, 23 (1963) 657–666.Google Scholar
  10. 10.
    Reddi, K.K. and Holland, J.F., Elevated serum ribonuclease in patients with pancreatic cancer, Proc. Natl. Acad. Sci. U.S.A., 73 (1976) 2308–2310.Google Scholar
  11. 11.
    Maor, D. and Mardiney, M.R. Jr., Alteration of human serum ribonuclease activity in malignancy, CRC Crit. Rev. Clin. Lab. Sci., 10 (1978) 89–111.Google Scholar
  12. 12.
    Peterson, L.M., Serum RNase in the diagnosis of pancreatic carcinoma, Proc. Natl. Acad. Sci. U.S.A., 76 (1979) 2630–2634.Google Scholar
  13. 13.
    Corbishley, T.P., Greenway, B., Johnson, P.J. and Williams, R., Serum ribonuclease in the diagnosis of pancreatic carcinoma and in monitoring chemotherapy, Clin. Chim. Acta., 124 (1982) 225–233.Google Scholar
  14. 14.
    Isaacs, P., Non-specificity of elevated serum ribonuclease as a pancreatic tumour marker, Digestion, 22 (1981) 101–107.CrossRefGoogle Scholar
  15. 15.
    Doran, G., Allen-Mersh, T.G. and Reynolds, K.W., Ribonuclease as a tumour marker for pancreatic carcinoma, J. Clin. Pathol., 33 (1980) 1212–1213.Google Scholar
  16. 16.
    Hidaka, Y., Kimura, M., Izumi, Y., Takano, T., Tatsumi, K.I. and Amino, N., Increased serum concentration of eosinophil-derived neurotoxin in patients with Graves' disease, Thyroid, 13 (2003) 129–132.Google Scholar
  17. 17.
    Ye, B., Skates, S., Horick, N.K., Rosenberg, H.F., Vitonis, A., Berkowitz, R.S., Mok, S.C. and Cramer, D.W., Proteomic-based discovery and characterization of glycosylated eosinophil-derived-neurotoxin and c-terminal osteopontin fragments for ovarian cancer in urine, Clinical Cancer Research, (2005) in press.Google Scholar
  18. 18.
    Kuroi, K. and Toi, M., Circulating angiogenesis regulators in cancer patients, Int. J. Biol. Markers, 16 (2001) 5–26.Google Scholar
  19. 19.
    Zhao, H., Grossman, H.B., Delclos, G.L., Swang, L.Y., Troisi, C.L., Chamberlain, R.M., Chenoweth, M.A., Zhang, H., Spitz, M.R. and Wu, X., Increased plasma levels of angiogenin and the risk of bladder carcinoma: from intiation to recurrence, Cancer, 104 (2005) 30–35.Google Scholar
  20. 20.
    Pavel, M.E., Hassler, G., Baum, U., Hahn, E.G., Lohmann, T. and Schuppan, D., Circulating levels of angiogenic cytokines can predict tumour progression and prognosis in neuroendocrine carcinomas, Clin. Endocrinol., 62 (2005) 434–443.Google Scholar
  21. 21.
    Koutroubakis, I.E., Xidakis, C., Karmiris, K., Sfiridaki, A., Kandidaki, E. and Kouroumalis, E.A., Serum angiogenin in inflammatory bowel disease, Dig. Dis. Sci., 49 (2004) 1758–1762.Google Scholar
  22. 22.
    Steff, A.M., Gagne, D., Page, M., Rioux, A., Hugo, P. and Gosselin, D., Serum concentrations of insulin-like growth factor-1, soluble tumor necrosis factor receptor-1 and angiogenin in endometriosis patients, Am. J. Reprod. Immunol., 51 (2004) 166–173.Google Scholar
  23. 23.
    Beintema, J.J., Gaastra, W., Lenstra, J.A., Welling, G.W. and Fitch, W.M., The molecular evolution of pancreatic ribonuclease, J. Mol. Evol., 10 (1977) 49–71.Google Scholar
  24. 24.
    Beintema, J.J., Fitch, W.M. and Carsana, A., Molecular evolution of pancreatic-type ribonucleases, Mol. Biol. Evol., 3 (1986) 262–275.Google Scholar
  25. 25.
    Beintema, J.J., Ribonucleases in ruminants, 297 (2002) 1121–1122.Google Scholar
  26. 26.
    Beintema, J.J., Introduction: the ribonuclease A superfamily, Cell Mol. Life Sci., 54 (1998) 763—765.Google Scholar
  27. 27.
    Zhou, H.M. and Strydom, D.J., The amino acid sequence of human ribonuclease 4, a highly conserved ribonuclease that cleaves specifically on the 3side of uridine, Eur. J. Biochem., 217 (1993) 401–410.Google Scholar
  28. 28.
    Seno, M., Futami, J., Tsushima, Y., Akutagawa, K., Kosaka, M., Tada, H. and Yamada, H., Molecular cloning and expression of human ribonuclease 4 cDNA, Biochim. Biophys. Acta., 1261 (1995) 424–426.Google Scholar
  29. 29.
    Harder, J. and Schroder, J.M., RNase 7, a novel innate immune defense an antimicrobial protein of healthy human skin, J. Biol. Chem., 277 (2002) 46779–46784.Google Scholar
  30. 30.
    Zhang, J., Dyer, K.D. and Rosenberg, H.F., Human RNase 7: a new cationic ribonuclease of the RNase A superfamily, Nucl. Acids Res., 31 (2003) 602–607.Google Scholar
  31. 31.
    Dyer, K.D. and Rosenberg, H.F., Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family, Nucleic Acids Res., 24 (1996) 3507–3513.Google Scholar
  32. 32.
    Zhang, J., Dyer, K.D. and Rosenberg, H.F., RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta, Nucl. Acids Res., 30 (2002) 1169–1175.Google Scholar
  33. 33.
    Cho, S., Beintema, J.J. and Zhang, J., The Ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories, Genomics, 85 (2005) 208–220.Google Scholar
  34. 34.
    Penttinen, J., Pujianto, D.A., Sipila, P., Huhtaniemi, I. and Poutanen, M., Discovery in silico and characterization in vitro of novel genes exclusively expressed in the mouse epididymis, Mol. Endocrinol., 17 (2003) 2138–2151.Google Scholar
  35. 35.
    Devor, E.J., Moffat-Wilson, K.A. and Galbraith, J.J., LOC 390443 (RNase 9) on chromosome 14q11.2 is related to the RNase superfamily and contains a unique amino-terminal preproteinlike sequence, Hum. Biol., 76 (2004) 921–935.Google Scholar
  36. 36.
    Castella, S., Fouchecourt, S., Teixeira-Gomes, A.P., Vinh, J., Belghazi, M., Dacheux, F. and Dacheux, J.L., Identification of a member of a new RNase A family, specifically secreted by epididymal caput epithelium, Biol. Reprod., 70 (2004) 319–328.Google Scholar
  37. 37.
    Castella, S., Benedetti, H., de Llorens, R., Dacheux, J.L. and Dacheux, F., Train A, an RNase A-like protein without RNase activity, is secreted and reabsorbed by the same epididymal cells under testicular control, Biol. Reprod., 71 (2004) 1677–1687.Google Scholar
  38. 38.
    Rosenberg, H.F., Eosinophils. In: Gallin, J.I. et al. (Eds.), Inflammation: Basic Principles and Clinical Correlates, 3rd edn, Raven Press Ltd., New York, NY, (1999) pp. 65–76.Google Scholar
  39. 39.
    Rosenberg, H.F., The eosinophil ribonucleases, Cell Mol. Life Sci., 54 (1998) 795–803.Google Scholar
  40. 40.
    Rosenberg, H.F. and Domachowske, J.B., Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens, J. Leukoc Biol., 70 (2001) 691–698.Google Scholar
  41. 41.
    Olsson, I. and Venge, P., Cationic proteins of human granulocytes. I. Isolation of the cationic proteins from the granules of leukaemic myeloid cells, Scand. J. Haematol., 9 (1972) 204–214.CrossRefGoogle Scholar
  42. 42.
    Olsson, I. and Venge, P., Cationic proteins of human granulocytes. II. Separation of the cationic proteins of the granules of leukaemic myeloid cells, Blood, 44 (1974) 235–246.Google Scholar
  43. 43.
    Ackerman, S.J., Gleich, G.J., Loegering, D.A., Richardson, B.A. and Butterworth, A.E., Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni, Am. J. Trop. Med. Hyg., 34 (1985) 735–745.Google Scholar
  44. 44.
    Hamann, K.J., Barker, R.L., Loegering, D.A. and Gleich, G.J., Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis, J. Parasitol., 73 (1987) 523–529.Google Scholar
  45. 45.
    Hamann, K.J., Gleich, G.J., Checkel, J.L., Loegering, D.A., McCall, J.W. and Barker, R.L., In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins, J. Immunol., 144 (1990) 3166–3173.Google Scholar
  46. 46.
    Molina, H.A., Kierszenbaum, F., Hamann, K.J. and Gleich, G.J., Toxic effects produced or mediated by human eosinophil granule components on Trypansoma cruzi, Am. J. Trop. Med. Hyg., 38 (1988) 327–334.Google Scholar
  47. 47.
    McClaren, D.J., McKean, J.R., Olsson, I., Venge, P. and Kay, A.B., Morphological studies on the killling of schistosomula of Schistosoma mansoni by human eosinophil and neutrophil cationic proteins in vitro, Parasite Immunol., 3 (1981) 359–373.Google Scholar
  48. 48.
    Yazdanbakhsh, M., Tai, P.C., Spry, C.J., Gleich, G.J. and Roos, D., Synergism between eosinophil cationic protein and oxygen metabolites in killing of schistosomula of Schistosoma mansoni, J. Immunol., 138 (1987) 3443–3447.Google Scholar
  49. 49.
    Waters, L.S., Taverne, J., Tai, P.C., Spry, C.J., Targett, G.A. and Playfair, J.H., Killing of Plasmodium falciparum by eosniophil secretory protducts, Infect Immun., 55 (1987) 877–881.Google Scholar
  50. 50.
    Klion, A.D. and Nutman, T.B., The role of eosinophils in host defense against helminth parasites, J. Allergy Clin. Immunol., 113 (2004) 30–37.Google Scholar
  51. 51.
    Lee, J.J. and Lee, N.A., Eosinophil degranulation: an evolutionary vestige or a universally destructive effector function? Clin. Exp. Allergy, 35 (2005) 986–994.Google Scholar
  52. 52.
    Lehrer, R.I., Szklarek, D., Barton, A., Ganz, T., Hamann, K.J. and Gleich, G.J., Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein, J. Immunol., 142 (1989) 4428–4434.Google Scholar
  53. 53.
    Durack, D.T., Ackerman, S.J., Loegering, D.A. and Gleich, G.J., Purification of human eosinophil-derived neurotoxin, Proc. Natl. Acad. Sci. U.S.A., 76 (1981) 1443–1447.Google Scholar
  54. 54.
    Yang, D., Rosenberg, H.F., Chen, Q., Dyer, K.D., Kurosaka, K. and Oppenheim, J.J., Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells, Blood, 102 (2003) 3396–3403.Google Scholar
  55. 55.
    Yang, D., Chen, Q., Rosenberg, H.F., Rybak, S.M., Newton, D.L., Wang, Z.Y., Fu, Q., Tchernev, V.T., Wang, M., Schweitzer, B., Kingsmore, S.F., Patel, D.D., Oppenheim, J.J. and Howard, O.M., Human ribonuclease A superfamily members eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation, J. Immunol., 173 (2004) 6134–6142.Google Scholar
  56. 56.
    Oppenheim, J.J. and Yang, D., Alarmins: chemotactic activators of immune responses, Curr. Opin. Immunol., 17 (2005) 359–365.Google Scholar
  57. 57.
    Sorrentino, S., Tucker, G.K. and Glitz, D.G., Purification and characterization of a Ribonuclease from human liver, J. Biol. Chem., 263 (1988) 16125–16131.Google Scholar
  58. 58.
    Kauffman, H.F., Hovenga, H., de Bruijn, H.W. and Beintema, J.J., Eosinophil derived neurotoxin (EDN) levels in commercial human urinary preparations of glycoprotein hormones, Eur. J. Obstet. Gynecol. Reprod. Biol., 82 (1999) 111–113.Google Scholar
  59. 59.
    Gleich, G.J., Loegering, D.A., Bell, M.P., Checkel, J.L., Ackerman, S.J. and McKean, D.J., Biochemical and functional similariies between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease, Proc. Natl. Acad. Sci. U.S.A., 83 (1986) 3146–3150.Google Scholar
  60. 60.
    Hamann, K.J., Barker, R.L., Loegering, D.A., Pease, L.R. and Gleich, G.J., Sequence of human eosinophil-derived neurotoxin cDNA: identity of deduced amino acid sequence with human non-secretory ribonucleases, Gene, 83 (1989) 161–167.Google Scholar
  61. 61.
    Rosenberg, H.F., Ackerman, S.J. and Tenen, D.G., Human eosinophil cationic protein: molecular cloning of a cytotoxin and helminthotoxin with riobnuclease activity, J. Exp. Med., 170 (1989) 163–176.Google Scholar
  62. 62.
    Rosenberg, H.F., Tenen, D.G. and Ackerman, S.J., Molecular cloning of human eosinophil-derived neurotoxin: a member of the ribonuclease gene family, Proc. Natl. Acad. Sci. U.S.A., 86 (1989) 4460–4464.Google Scholar
  63. 63.
    Barker, R.L., Loegering, D.A., Ten, R.M., Hamann, K.J., Pease, L.R. and Gleich, G.J., Eosinophil cationic protein cDNA: comparison with other toxic cationic proteins and ribonucleases, J. Immunol., 143 (1989) 952–955.Google Scholar
  64. 64.
    Slifman, N.R., Loegering, D.A., McKean, D.J. and Gleich, G.J., Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein, J. Immunol., 137 (1986) 2913–2917.Google Scholar
  65. 65.
    Gullberg, U., Widegren, B., Arivason, U., Egesten, A. and Olsson, I., The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity, Biochem. Biophys. Res. Commun., 139 (1986) 1239–1242.Google Scholar
  66. 66.
    Libonati, M. and Sorrentino, S., Revisiting the action of bovine ribonuclease A and pancreatic type ribonucleases on double-stranded RNA, Mol. Cell Biochem., 117 (1992) 139–151.Google Scholar
  67. 67.
    Sorrentino, S. and Libonati, M., Human pancreatic-type and non-pancreatic-type ribonucleases: a direct side-by-side comparison of their catalytic properties, Arch. Biochem. Biophys., 312 (1994) 340–348.Google Scholar
  68. 68.
    Rosenberg, H.F., Recombinant eosinophil cationic protein (ECP): Ribonuclease activity is not essential for cytoxicity, J. Biol. Chem., 270 (1995) 7876–7881.Google Scholar
  69. 69.
    Young, J.D., Peterson, C.G., Venge, P. and Cohn, Z.A., Mechanism of membrane damage mediated by human eosinophil cationic protein, Nature, 321 (1986) 613–616.Google Scholar
  70. 70.
    Rosenberg, H.F., Dyer, K.D., Tiffany, H.L. and Gonzalez, M., Rapid evolution of a unique family of primate ribonuclease genes, Nature Genetics, 10 (1995) 219–223.Google Scholar
  71. 71.
    Zhang, J., Rosenberg, H.F. and Nei, M., Positive Darwinian selection after gene duplication in primate ribonuclease genes, Proc. Natl. Acad. Sci. U.S.A., 95 (1998) 3708–3713.Google Scholar
  72. 72.
    Zhang, J. and Rosenberg, H.F., Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates, Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 5486–5491.Google Scholar
  73. 73.
    Rosenberg, H.F. and Dyer, K.D., Eosinophil cationic protein and eosinophil-derived neurotoxin: evolution of novel function in a primate ribonuclease gene family, J. Biol. Chem., 270 (1995) 21530–21544.Google Scholar
  74. 74.
    Larson, K.A., Olson, E.V., Madden, B.J., Gleich, G.J., Lee, N.A. and Lee, J.J., Two highly homologous ribonuclease genes expressed in mouse eosinophils identify a larger subgroup of the mammalian ribonuclease superfamily, Proc. Natl. Acad. Sci. U.S.A., 3 (1996) 12370–12375.Google Scholar
  75. 75.
    Zhang, J., Dyer, K.D. and Rosenberg, H.F., Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection, Proc. Natl. Acad. Sci. U.S.A., 97 (2000) 4701–4706.Google Scholar
  76. 76.
    Cormier, S.A., Yuan, S., Crosby, J.R., Protheroe, C.A., Dimina, D.M., Hines, E.M., Lee, N.A. and Lee, J.J., T(H)2-mediated pulmonary inflammation leads to the differential expression of ribonuclease genes by alveolar macrophages, Am. J. Respir. Cell Mol. Biol., 27 (2002) 678–687.Google Scholar
  77. 77.
    Garvey, T.L., Dyer, K.D., Ellis, J.A., Bonville, C.A., Foster, B., Prussin, C., Easton, A.J., Domachowske, J.B. and Rosenberg, H.F., Inflammatory responses to pneumovirus infection in IFN-alphabetaR gene-deleted mice, J. Immunol., 175 (2005) 4735–4744.Google Scholar
  78. 78.
    Nitto, T., Dyer, K.D., Mejia, R.A., Bystrom, J., Wynn, T.A. and Rosenberg, H.F., Characterization of the divergent eosinophil ribonuclease, mEar 6, and its expression in response to Schistosoma mansoni infection in vivo, Genes Immun., 5 (2004) 668–674.Google Scholar
  79. 79.
    Lee-Huang, S., Huang, P.L., Sun, Y., Huang, P.L., Kung, H.F., Blithe, D.L. and Chen, H.C., Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin, Proc. Natl. Acad. Sci. U.S.A., 96 (1999) 2678–2681.Google Scholar
  80. 80.
    Rugeles, M.T., Trubey, C.M., Bedoya, V.I., Pinto, L.A., Oppenheim, J.J., Rybak, S.M. and Shearer, G.M., Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition, AIDS., 17 (2003) 481–486.Google Scholar
  81. 81.
    Garofalo, R., Kimpen, J.L., Welliver, R.C. and Ogra, P.L., Eosinophil degranulation in the respiratory tract during naturally acquired respiratory syncytial virus infection, J. Pediatr., 120 (1992) 28–35.Google Scholar
  82. 82.
    Colocho Zelaya, E.A., Orvell, C. and Strannegard, O., Eosinophil cationic protein in nasopharyngeal secretions and serum of infants infected with respiratory syncytial virus, Pediatr. Allergy Immunol., 5 (1994) 100–106.Google Scholar
  83. 83.
    Sigurs, N., Bjarnason, R. and Sigurbergsson, F., Eosinophil cationic protein in nasal secretion and in serum and myeloperoxidase in serum in respiratory syncytial virus bronchiolitis: relation to asthma and atopy, Acta. Paediatr., 83 (1994) 1151–1155.Google Scholar
  84. 84.
    Harrison, A.M., Bonville, C.A., Rosenberg, H.F. and Domachowske, J.B., Respiratory syncytical virus-induced chemokine expression in the lower airways: eosinophil recruitment and degranulation, Am. J. Respir. Crit. Care Med., 159 (1999) 1918–1924.Google Scholar
  85. 85.
    Domachowske, J.B., Dyer, K.D., Bonville, C.A. and Rosenberg, H.F., Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus, J. Infect Dis., 177 (1998) 1458–1464.CrossRefGoogle Scholar
  86. 86.
    Rosenberg, H.F., Bonville, C.A., Easton, A.J. and Domachowske, J.B., The pneumonia virus of mice infection model for severe respiratory syncytial virus infection: identifying novel targets for therapeutic intervention, Pharmacol. Ther., 105 (2005) 1–6.Google Scholar
  87. 87.
    Easton, A.J., Domachowske, J.B. and Rosenberg, H.F., Animal pneumoviruses: molecular genetics and pathogenesis, Clin. Microbiol. Rev., 17 (2004) 390–412.Google Scholar
  88. 88.
    Zhang, J. and Rosenberg, H.F., Sequence variation at two eosinophil-associated ribonuclease loci in humans, Genetics, 156 (2000) 1949–1958.Google Scholar
  89. 89.
    Kim, Y.J., Kumaraswami, V., Choi, E., Mu, J., Follmann, D.A., Zimmerman, P. and Nutman, T.B., Genetic polymorphisms of eosinophil-derived neurotoxin and eosinophil cationic protein in tropical pulmonary eosinophilia, Am. J. Trop. Med. Hyg., 73 (2005) 125–130.Google Scholar
  90. 90.
    Breukelman, H.J., van der Munnik, N., Kleineidam, R.G., Furia, A. and Beintema, J.J., Secretory ribonuclease genes and pseudogenes in true ruminants, Gene, 212 (1998) 259–268.Google Scholar
  91. 91.
    Fett, J.W., Strydom, D.J., Lobb, R.R., Alderman, E.M., Bethune, J.L., Riordan, J.F., et al., Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells, Biochemistry, 24 (1985) 5480–5486.Google Scholar
  92. 92.
    Strydom, D.J., Fett, J.W., Lobb, R.R., Alderman, E.M., Bethune, J.L., Riordan, J.F., et al., Amino acid sequence of human tumor derived angiogenin, Biochemistry, 24 (1985) 5486–5494.Google Scholar
  93. 93.
    Kurachi, K., Davie, E.W., Strydom, D.J., Riordan, J.F. and Vallee, B.L., Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor, Biochemistry, 24 (1985) 5494–5499.Google Scholar
  94. 94.
    Buolamwini, J.K., Novel anticancer drug discovery, Curr. Opin. Chem. Biol., 3 (1999) 500–509.Google Scholar
  95. 95.
    Riordan, J.F. and Vallee, B.L., Organogenesis and angiogenin, Cell Mol. Life Sci., 53 (1997) 803–815.Google Scholar
  96. 96.
    Loverix, S. and Steyaert, J., Ribonucleases: from prototypes to therapeutic targets, Curr. Med. Chem., 10 (2003) 1241–1253.Google Scholar
  97. 97.
    Leland, P.A., Staniszewski, K.E., Park, C., Kelemen, B.R. and Raines, R.T., The ribonucleolytic activity of angiogenin, Biochemistry, 41 (2002) 1343–1350.Google Scholar
  98. 98.
    St. Clair, D.K., Rybak, S.M., Riordan, J.F. and Vallee, B.L., Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes, Proc. Natl. Acad. Sci. U.S.A., 84 (1987) 8330–8334.Google Scholar
  99. 99.
    Hallahan, T.W., Shapiro, R. and Vallee, B.L., Dual site model for the organogenic activity of angiogenin, Proc. Natl. Acad. Sci. U.S.A., 88 (1991) 2222–2226.Google Scholar
  100. 100.
    Hu, G.F., Strydom, D.J., Fett, J.W., Riordan, J.F. and Vallee, B.L., Actin is a binding protein for angiogenin, Proc. Natl. Acad. Sci. U.S.A., 90 (1993) 1217–1221.Google Scholar
  101. 101.
    Hu, G.F., Riordan, J.F. and Vallee, B.F., A putative angiogenin receptor in angiogenin-responsive human endothelial cells, Proc. Natl. Acad. Sci. U.S.A., 94 (1997) 2204–2209.Google Scholar
  102. 102.
    Liu, S., Yu, D., Xu, Z.P., Riordan, J.F. and Hu, G.F., Angiogenin activated Erk 1/2 in human umbilical vein endothelial cells, Biochem. Biophys. Res. Commun., 287 (2001) 305–310.Google Scholar
  103. 103.
    Kishimoto, K., Liu, S., Tsuji, T., Olson, K.A. and Hu, G.F., Enodgenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis, Oncogene, 24 (2005) 445–456.Google Scholar
  104. 104.
    Hu, G., Xu, C. and Riordan, J.F., Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA, J. Cell Biochem., 76 (2000) 452–462.Google Scholar
  105. 105.
    Nobile, V., Russo, N., Hu, G. and Riordan, J.F., Inhibition of human angiogenin by DNA aptamers: nuclear colocalization of an angiogenin-inhibitor complex, Biochemistry, 37 (1998) 6857–6863.Google Scholar
  106. 106.
    Tsuji, T., Sun, Y., Kishimoto, K., Olson, K.A., Liu, S., Hirukawa, S. and Hu, G.F., Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation, Cancer Res., 65 (2005) 1352–1360.Google Scholar
  107. 107.
    Xu, Z.P., Tsuji, T., Riordan, J.F. and Hu, G.F., The nuclear function of angiogenin in endothelial cells is related to rRNA production, Biochem. Biophys. Res. Commun., 294 (2002) 287–292.Google Scholar
  108. 108.
    Xu, Z.P., Tsuji, T., Riordan, J.F. and Hu, G.F., Identification and characterization of an angiogenin-binding DNA sequence that stimulates luciferase reporter gene expression, Biochemistry, 42 (2003) 121–128.Google Scholar
  109. 109.
    Zhang, J. and Rosenberg, H.F., Diversifying selection of the tumor-growth promoter angiogenin in primate evolution, Mol. Biol. Evol., 19 (2002) 438–445.Google Scholar
  110. 110.
    Zhang, J. and Zhang, Y.P., Pseudogenization of the tumor-growth promoter angiogenin in a leaf-eating monkey, Gene, 308 (2003) 95–101.Google Scholar
  111. 111.
    Cho, S. and Zhang, J.,Ancient expansion of the mammalian ribonuclease A superfamily revealed by genomic analysis of placental and marsupial mammals, Gene, In press (2006).Google Scholar
  112. 112.
    Hooper, L.V., Stappenbock, T.S., Hong, C.V. and Gordon, J.I., Angiogenins: a new class of microbicidal proteins involved in innate immunity, Nature Immunol., 4 (2003) 269–273.Google Scholar
  113. 113.
    D'Alessio, G., Di Donato, A., Parente, A. and Piccoli, R., Seminal RNase: a unique member of the ribonuclease superfamily, TIBS, 16 (1991) 104–106.Google Scholar
  114. 114.
    D'Alessio, G., Evolution of oligomeric proteins. The unusual case of a dimeric ribonuclease, Eur. J. Biochem., 266 (1999) 699–708.Google Scholar
  115. 115.
    Libonati, M., Biological actions of the oligomers of ribonuclease A, Cell Mol. Life Sci., 61 (2004) 2431–2436.Google Scholar
  116. 116.
    Libonati, M. and Gotte, G., Oligomerization of bovine ribonuclease A: structural and functional features of its multimers, Biochem. J., 380 (2004) 311–327.Google Scholar
  117. 117.
    Kim, J.S., Soucek, J., Matousek, J. and Raines, R.T., Structural basis for the biological activities of bovine seminal ribonuclease, J. Biol. Chem., 270 (1995) 10525–10530.Google Scholar
  118. 118.
    Bracale, A., Castaldi, F., Nitsch, L. and D'Alessio, G., A role for the intersubunit disulfides of seminal RNase in the mechanism of its antitumor action, Eur. J. Biochem., 270 (2003) 1980–1987.Google Scholar
  119. 119.
    Ciglic, M.I., Jackson, P.J., Raillard, S.A., Haugg, M., Jermann, T.M., Opitz, J.G., Trabesinger-Ruif, N. and Benner, S.A., Origin of the dimeric structure in the ribonuclease superfamily, Biochemistry, 37 (1998) 4008–4002.Google Scholar
  120. 120.
    Kim, J.S., Soucek, J., Matousek, J. and Raines, R.T., Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities, Biochem. J., 308 (1995) 547–550.Google Scholar
  121. 121.
    Opitz, J.G., Ciglic, M.I., Haugg, M., Trautwein-Fritz, K., Raillard, S.A., Jermann, T.M. and Benner, S.A., Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA, Biochemistry, 37 (1998) 4023–4033.Google Scholar
  122. 122.
    Sica, F., Di Fiore, A., Merlino, A. and Mazzarella, L., Structure and stability of the non-covalent swapped dimmer of bovine seminal ribonuclease: an enzyme tailored to evade ribonuclease protein inhibitor, J. Biol. Chem., 279 (2004) 36753–36760.Google Scholar
  123. 123.
    Antignani, A., Naddeo, M., Cubellis, M.V., Russo, A. and D'Alessio, G., Antitumor action of seminal ribonuclease, its dimeric structure and its resistance to the cytosolic ribonuclease inhibitor, Biochemistry, 40 (2001) 3492–3496.Google Scholar
  124. 124.
    Matronicola, M.R., Piccoli, R. and D'Alessio, G., Key extracellular and intracellular steps in the antitumor action of seminal ribonuclease, Eur. J. Biochem., 230 (1995) 242–249.Google Scholar
  125. 125.
    Bracale, A., Spalletti-Cernia, D., Mastonicola, M., Castaldi, F., Mannucci, R., Nitsch, L. and D'Alessio, G., Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease, Biochem. J., 362 (2002) 553–560.Google Scholar
  126. 126.
    Matousek, J., Soucek, J., Slavik, T., Tomanek, M., Lee, J.E. and Raines, R.T., Comprehensive comparison of the cytotoxic activities of onconase and bovine seminal ribonuclease. Comp. Biochem. and Physiol., C136 (2003) 343–356.Google Scholar
  127. 127.
    Viola, M., Libra, M., Callari, D., Sinatra, F., Spada, D., Noto, D., Emmanuele, G., Romano, F., Averna, M., Pezzino, R.M., Stivala, F. and Travali, S., Bovine seminal ribonuclease is cytotoxic for both malignant and normal telomerase-positive cells, Int. J. Oncol., 27 (2005) 1071–1077.Google Scholar
  128. 128.
    Marinov, I. and Soucek, J., Bovine seminal ribonuclease induces in vitro concentration dependent apoptosis in stimulated human lymphocytes and cells from human tumor cell lines, Neoplasma, 47 (2000) 294–298.Google Scholar
  129. 129.
    Sinatra, F., Callari, D., Viola, M., Longombardo, M.T., Patania, M., Litrico, L., Emmanuele, G., Lanteri, E., D'Alessandro, N. and Travali, S., Bovine seminal RNase induces apoptosis in normal proliferating lymphocytes, Int. J. Clin. Lab. Res., 30 (2000) 191–196.Google Scholar
  130. 130.
    Soucek, J., Marinov, I., Benes, J., Hilgert, I., Matousek, J. and Raines, R.T., Immunosppressive activity of bovine seminal ribonuclease and its mode of action, Immunobiology, 195 (1996) 271–285.Google Scholar
  131. 131.
    Kotchetkov, R., Cinatl, J., Krivtchik, A.A., Vogel, J.U., Matousek, J., Pouckova, P., Kornhuber, B., Schwabe, D. and Cinatl, J. Jr., Selective activity of BS-RNase against anaplastic thyroid cancer, Anticancer Res., 21 (2001) 1035–1042.Google Scholar
  132. 132.
    Matousek, J. and Klaudy, J., Qualitative and quantitative analyses of seminal ribonuclease in reproductive tract fluids of bulls, Anim. Reprod. Sci., 30 (1998) 111–118.Google Scholar
  133. 133.
    Slavik, T., Matousek, J., Fulka, J. and Raines, R.T., Effect of bovine seminal ribonuclease and bovine pancreatic ribonuclease A on bovine oocyte maturation, J. Exp. Zool., 287 (2000) 394–399.Google Scholar
  134. 134.
    Kleineidam, R.G., Jekel, P.A., Beintema, J.J. and Situmorang, P., Seminal-type riobnuclease genes in ruminants, sequence conservation without protein expression? Gene, 231 (1999) 147–153.Google Scholar
  135. 135.
    Trabesinger-Ruef, N., Jermann, T., Zankel, T., Durrant, B., Frank, G. and Benner, S.A., Pseudogenes in ribonuclease evolution: a source of new biomacromolecular function? FEBS Letters, 382 (1996) 319–322.Google Scholar
  136. 136.
    Titani, K., Takio, K., Kuwada, M., Nitta, K., Sakakibara, F., Kawauchi, H., et al., Amino acid sequence of a lectin from frog (Rana catesbeiana), Biochemistry, 26 (1987) 2188–2194.Google Scholar
  137. 137.
    Nitta, R., Katayama, N., Okabe, Y., Iwama, M., Watanabe, H., Abe, Y., et al., Primary structure of a Ribonuclease from bullfrog (Rana catesbeiana) liver, J. Biochem. (Tokyo), 106 (1989) 729–735.Google Scholar
  138. 138.
    Ardelt, W., Mikulski, M. and Shogen, K., Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes an d early embryos, J. Biol. Chem., 266 (1991) 245–251.Google Scholar
  139. 139.
    Matousek, J., Ribonucleases and their antitumor activity, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 129 (2001) 175–191.Google Scholar
  140. 140.
    Leland, P.A. and Raines, R.T., Cancer chemotherapy – ribonucleases to the rescue, Chem. Biol., 8 (2001) 405–413.Google Scholar
  141. 141.
    Ardelt, B., Ardelt, W. and Darzynkiewicz, Z., Cytotoxic ribonucleases and RNA interference (RNAi), Cell Cycle., 2 (2003) 22–24.Google Scholar
  142. 142.
    Matousek, J., Soucek, J., Slavik, T., Tomanek, M., Lee, J.E. and Raines, R.T., Comprehensive comparison of the cytotoxic activities of onconase and bovine seminal ribonuclease, Comp. Biochem. and Physiol., C136 (2003) 343–356.Google Scholar
  143. 143.
    Tang, P.C., Huang, H.C., Wang, S.C., Jeng, J.C. and Liao, Y.D., Regulation of ribonuclease expression by estradiol in Rana catesbeiana (Bullfrog), Nucl. Acids Res., 30 (2002) 3286–3293.Google Scholar
  144. 144.
    Rosenberg, H.F., Zhang, J., Liao, Y.-D. and Dyer, K.D., Rapid diversification of RNase A superfamily ribonucleases from the bullfrog, Rana catesbeiana, J. Mol. Evol., 53 (2001) 31–38.Google Scholar
  145. 145.
    Liao, Y.D., Huang, H.C., Leu, Y.J., Wei, C.W., Tang, P.C. and Wang, S.C., Purification and cloning of cytotoxic ribonucleases from Rana catesbeiana (bullfrog), Nucleic Acids Res., 28 (2000) 4097–4104.Google Scholar
  146. 146.
    Kumar, S., Tamura, K. and Nei, M., MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment, Brief Bioinform., 5 (2004) 150–163.Google Scholar
  147. 147.
    Klenova, E.M., Botezato, I., Laudet, V., Goodwin, G.H., Wallace, J.C. and Lobanenkov, V.V., Isolation of a cDNA clone encoding the RNase-superfamily-related gene highly expressed in chicken bone marrow cells, Biochem. Biophys. Res. Commun., 185 (1992) 231–239.Google Scholar
  148. 148.
    Nakano, T. and Graf, T., Identification of genes differentially expressed in two types of v-myb-ransformed avian myelomonocytic cells, Oncogene, 7 (1992) 527–534.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratory of Allergic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations