Molecular Diversity

, Volume 10, Issue 2, pp 93–94 | Cite as

Ecotoxicological modeling and risk assessment using chemometric tools

Editorial introduction


QSAR Model Phenylsulfonyl Chemometric Tool Genetic Function Approximation Dermal Toxicity 


  1. 1.
    Mackay, D., Hubbarde, J. and Webster, E., The role of QSARs and fate models in chemical hazard and risk assessment, QSAR Comb. Sci., 22 (2003) 106–112.CrossRefGoogle Scholar
  2. 2.
    Tunkel, J., Mayo, K., Austin, C., Hickerson, A. and Howard, P., Practical considerations on the use of predictive models for regulatory purposes, Environ. Sci. Technol., 39 (2005) 2188–2199.CrossRefGoogle Scholar
  3. 3.
    Helma, C., Data mining and knowledge discovery in predictive toxicology, SAR QSAR Environ. Res., 15 (2004) 367–384.CrossRefGoogle Scholar
  4. 4.
    Comber, M.H.I., Walker, J.D., Watts, C. and Hermens, J., Quantitative structure-activity relationships for predicting potential ecological hazard of organic chemicals for use in regulatory risk assessments, Environ. Toxicol. Chem., 22 (2003) 1822–1828.CrossRefGoogle Scholar
  5. 5.
    von der Ohe, P.C., Kuhne, R., Ebert, R.U., Altenburger, R., Liess, M. and Schuurmann, G., Structural alerts – a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay, Chem. Res. Toxicol., 18 (2005) 536–555.CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Papa, E., Battaini, F. and Gramatica, P., Ranking of aquatic toxicity of esters modeled by QSARs, Chemosphere, 58 (2005) 559–570.CrossRefGoogle Scholar
  8. 8.
    Boeije, G.M., Cano, M.L., Marshall, S.J., Belanger, S.E., Van Compernolle, R., Dorn, P.B., Gumbel, H., Toy, R. and Wind, T., Ecotoxicity quantitative structure-activity relationships for alcohol ethoxylate mixtures based on substance-specific toxicity predictions, Ecotoxicol. Environ. Saf., 2005, Oct 24 Epub.
  9. 9.
    Bermudez-Saldana, J.M., Escuder-Gilabert, L., Medina-Hernandez, M.J., Villanueva-Camanas, R.M. and Sagrado, S., Modelling bioconcentration of pesticides in fish using biopartitioning micellar chromatography, J. Chromatogr. A., 1063 (2005) 153–160.Google Scholar
  10. 10.
    Schultz, T.W., Netzeva, T.I. and Cronin, M.T., Evaluation of QSARs for ecotoxicity: a method for assigning quality and confidence, SAR QSAR Environ. Res., 15 (2004) 385–397.CrossRefGoogle Scholar
  11. 11.
    Bermudez-Saldana, J.M., Escuder-Gilabert, L., Medina-Hernandez, M.J., Villanueva-Camanas, R.M. and Sagrado, S., Chromatographic evaluation of the toxicity in fish of pesticides, J. Chromatogr. B, 814 (2005) 115–125.CrossRefGoogle Scholar
  12. 12.
    Licht, O., Weyers, A. and Nagel, R., Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals, Environ. Sci. Pollut. Res. Int., 11 (2004) 291–296.CrossRefGoogle Scholar
  13. 13.
    Sanderson, H., Johnson, D.J., Reitsma, T., Brain, R.A., Wilson, C.J. and Solomon, K.R. Ranking and prioritization of environmental risks of pharmaceuticals in surface waters, Regul. Toxicol. Pharmacol., 39 (2004) 158–183.CrossRefGoogle Scholar
  14. 14.
    Mazzatorta, P., Benfenati, E., Lorenzini, P. and Vighi, M., QSAR in ecotoxicity: an overview of modern classification techniques, J. Chem. Inf. Comput. Sci., 44 (2004) 105–112.CrossRefGoogle Scholar
  15. 15.
    Ren, S., Ecotoxicity prediction using mechanism- and non-mechanism-based QSARs: a preliminary study, Chemosphere, 53 (2003) 1053–1065.CrossRefGoogle Scholar
  16. 16.
    Sverdrup, L.E., Nielsen, T. and Krogh, P.H., Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility, Environ. Sci. Technol., 36 (2002) 2429–2435.CrossRefGoogle Scholar
  17. 17.
    Briens, F., Bureau, R. and Rault, S., Applicability of CATALYST in ecotoxicology, a new promising tool for 3D-QSAR: study of chlorophenols, Ecotoxicol. Environ. Saf., 43 (1999) 241–251.CrossRefGoogle Scholar
  18. 18.
    Bureau, R., Faucon, J.C., Faisant, J., Briens, F. and Rault, S., Applicability of the free energies of solvation for the prediction of ecotoxicity: study of chlorophenols, SAR QSAR Environ. Res., 6 (1997) 163–181.CrossRefGoogle Scholar
  19. 19.
    Roy, D.R., Parthasarathi, R., Maiti, B., Subramanian, V. and Chattaraj, P.K., Electrophilicity as a possible descriptors for toxicity prediction, Bioorg. Med. Chem., 13 (2005) 3405–3412.CrossRefGoogle Scholar
  20. 20.
    Schultz, T.W., Netzeva, T.I., Roberts, D.W. and Cronin, M.T., Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic carbonyl–containing alpha, beta-unsaturated chemicals, Chem. Res. Toxicol., 18 (2005) 330–341.CrossRefGoogle Scholar
  21. 21.
    Roy, K. and Ghosh, G., QSTR with extended topochemical atom indices. 4. Modeling of the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri using principal component factor analysis and principal component regression analysis, QSAR Comb. Sci., 23 (2004) 526–535.CrossRefGoogle Scholar
  22. 22.
    Roy, K. and Ghosh, G., QSTR with extended topochemical atom indices. Part 5. Modeling of the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri using genetic function approximation, Bioorg. Med. Chem., 13 (2005) 1185–1194.CrossRefGoogle Scholar
  23. 23.
    Di Marzio, W., Galassi, S., Todeschini, R. and Consolaro, F., Traditional versus WHIM molecular descriptors in QSAR approaches applied to fish toxicity studies, Chemosphere, 44 (2001) 401–406.CrossRefGoogle Scholar
  24. 24.
    Vighi, M., Gramatica, P., Consolaro, F. and Todeschini, R., QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals, Ecotoxicol. Environ. Saf., 49 (2001) 206–220.Google Scholar
  25. 25.
    Basak, S.C., Grunwald, G.D., Gute, B.D., Balasubramanian, K. and Opitz, D., Use of statistical and neural net approaches in predicting toxicity of chemicals, J. Chem. Inf. Comput. Sci., 40 (2000) 885–890.Google Scholar
  26. 26.
    Chen, D., Yin, C., Wang, X. and Wang, L., Holographic QSARs of selected esters, Chemosphere, 57, (2004), (1739)–1745.Google Scholar
  27. 27.
  28. 28.
  29. 29.
    Furusjö, E., Andersson, M., Rahmberg, M. and Svenson, A., Estimating environmentally important properties of chemicals from the chemical structure, IVL Swedish Environmental Research Institute Report B1517, March 2003,
  30. 30.
    Hulzebos, E., Sijm, D., Traas, T., Posthumus, R. and Maslankiewicz, L., Validity and validation of expert (Q)SAR systems, SAR QSAR Environ. Res., 16 (2005) 385–401.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Drug Theoretics and Cheminformatics Lab, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Faculty of Engineering and TechnologyJadavpur UniversityKolkataIndia

Personalised recommendations