Molecular Diversity

, Volume 10, Issue 2, pp 233–245 | Cite as

Structure-toxicity relationships of nitroaromatic compounds

Full-length paper
  • Olexandr Isayev
  • Bakhtiyor Rasulev
  • Leonid Gorb
  • Jerzy Leszczynski
Article

Summary

The toxicity data of 28 nitroaromatic compounds (nitrobenzenes and, for comparison, benzene and toluene) related to a 50% lethal dose concentration for rats (LD50) were used to develop quantitative structure-activity relationships (QSARs).

A genetic algorithm and multiple regression analysis were applied to select the descriptors and to generate the correlation models. The obtained equations consist of one to three descriptors. A number of molecular descriptors was obtained from HF/6-31G(d) and DFT (B3LYP/6-311+G(d, p)) level calculations. The calculated molecular geometry and electronic properties were evaluated by comparison with the available experimental data (where applicable). All parameters obtained at the B3LYP/6-311+G(d, p) level and the topological descriptors derived from this geometry were found to be reliable, except for dipole moment, due to the large uncertainty of its estimation.

Satisfactory relationships were observed for the one-parameter structure-toxicity models between topological (X5Av, Ms) and quantum-chemical (ELUMO) descriptors. For better predictability two- and three-parameter QSAR analyses were performed. These analyses resulted in much better equations with correlation coefficient values r = 0.872−0.924. These models have been obtained with a set of topological, fragment and quantum-chemical descriptors (Ms, PCR, PCD, BELe1, C-026 and ELUMO).

The toxicity of nitroaromatic compounds appears to be governed by a number of factors, such as the number of nitrogroups, the electrotopological state, the presence of certain fragments and the electrophilicity/reactivity parameter (ELUMO). Nitrobenzenes exhibited electrophilic reactivity (as was shown by correlation of the toxicity with the energy of the lowest unoccupied orbital, ELUMO).

The toxicity LD50 parameter for rats has been utilized for the first time for QSAR analysis of nitrobenzenes. The predictive ability of the models is determined by a cross-validation “leave-one-out” method.

Keywords

nitroaromatic compounds QSAR toxicity LD50 genetic algorithm topological descriptors quantum-chemical descriptors electronic properties DFT 

Abbreviations:

HOMO

Highest Occupied Molecular Orbital

LUMO

Lowest Unoccupied Molecular Orbital

SOMO

Single-Occupied Molecular Orbital

DFT

density functional theory

B3LYP

Becke threeparameter hybrid functional combined with Lee–Yang–Parr correlation functional

AM1

Austin Model 1 semiempirical method

GA

Genetic Algorithm

MLRA

Multiple Linear Regression Analysis method

HF

Hartree-Fock

UHF

unrestricted Hartree-Fock

HLG

HOMO-LUMO gap

QSAR

quantitative structure-activity relationships

IP

ionization potential

LD50

lethal dose which causes the death of 50% (one half) of a group of test animals

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartter, D.R., The use and importance of nitroaromatic chemicals in the chemical industry, In Rickert, D.E. (Ed.), Toxicity of nitroaromatic compounds. Chemical Industry Institute of Toxicology Series, Chemisphere, Washington, D.C., 1985, pp. 1–14.Google Scholar
  2. 2.
    Nitrobenzene. Initial report of the TSCA Interagency Testing Committee to the administrator. EPA 560-10-78/001. U.S. Environmental Protection Agency, Washington, D.C., 1978.Google Scholar
  3. 3.
    Kriek, E., Aromatic amines and related compounds as carcinogenic hazards to man, In Emmelot, P. and Kriek, E. (Eds.), Environmental carcinogenesis, Elsevier, Amsterdam, 1979, pp. 143–164.Google Scholar
  4. 4.
    Won, W.D., di Salvo, L.H. and Ng. J., Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites, Appl. Environ. Microbiol., 31 (1976) 576–580.PubMedGoogle Scholar
  5. 5.
    Slater, E.C., Mechanism of uncoupling of oxidative phosphorylation by nitrophenols, Comp Biochem Physiol., 4 (1962) 281–301.CrossRefPubMedGoogle Scholar
  6. 6.
    Donlon, B.A., Razo-Flores, E., Field, J.A. and Lettinga, G., Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge, Appl. Environ. Microbiol., 61 (1995) 3889–3893.PubMedGoogle Scholar
  7. 7.
    Soffers, A.E.M.F., Boersma, M.G., Vaes, W.H.J., Vervoort, J., Tyrakowska, B., Hermens, J.L.M. and Rietjens, I.M.C.M., Computer-modeling-based QSARs for analyzing experimental data on biotransformation and toxicity, Toxicology in Vitro, 15 (2001) 539–551.CrossRefPubMedGoogle Scholar
  8. 8.
    Katritzky, A.R., Oliferenko, P., Oliferenko, A., Lomaka, A. and Karelson, M., Nitrobenzene toxicity: QSAR correlations and mechanistic interpretations, J. Phys. Org. Chem., 16 (2003) 811–817.CrossRefGoogle Scholar
  9. 9.
    Agrawal, W.K. and Khadikar, P.V., QSAR prediction of toxicity of nitrobenzenes, Bioorg. Med. Chem., 9 (2001) 3035–3040.CrossRefPubMedGoogle Scholar
  10. 10.
    Cronin, M.T.D. and Schultz, T.W., Development of Quantitative Structure-Activity Relationships for the Toxicity of Aromatic Compounds to Tetrahymena pyriformis: Comparative Assessment of the Methodologies, Chem. Res. Toxicol., 14 (2001) 1284–1295.CrossRefPubMedGoogle Scholar
  11. 11.
    Mekenyan, O., Roberts, D.W. and Karcher, W., MO-Parameters as Predictors of Skin Sensitization Potential of Halo- and Pseudohalobenzenes Acting as SNAr Electrophiles, Chem. Res. Toxicol., 10 (1997) 994–1000.CrossRefPubMedGoogle Scholar
  12. 12.
    Cronin, M.T.D., Gregory, B.W. and Schultz, T.W., Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahumena pyriformis, Chem. Res. Toxicol., 11 (1998) 902–908.CrossRefPubMedGoogle Scholar
  13. 13.
    Schmitt, H., Altenburger, R., Jastorff, B. and Schuurmann, G., Quantitative stucture-activity analysis of the algae toxicity of nitroaromatic compounds, Chem. Res. Toxicol., 13 (2000) 441–450.CrossRefPubMedGoogle Scholar
  14. 14.
    Toxicological Profile For Nitrophenols: 2-Nitrophenol, 4-Nitrophenol, Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, July 1992.Google Scholar
  15. 15.
    Toxicological Profile for Dinitrocresols. U.S. Department of Health and Human Services, US Public Health Service, Agency for Toxic Substances and Disease Registry, August 1995.Google Scholar
  16. 16.
    Toxicological Profile For Dinitrophenols. U.S. Department Of Health And Human Services, US Public Health Service, Agency for Toxic Substances and Disease Registry, August 1995.Google Scholar
  17. 17.
    Toxicological Profile For 1,3-Dinitrobenzene and 1,3,5-Trinitrobenzene. U.S. Department Of Health And Human Services, US Public Health Service, Agency for Toxic Substances and Disease Registry, August 1995.Google Scholar
  18. 18.
    Toxicological Profile For 2,4- and 2,6-Dinitrotoluene. U.S. Department Of Health And Human Services, US Public Health Service, Agency for Toxic Substances and Disease Registry, December 1998.Google Scholar
  19. 19.
    Toxicological Profile For Nitrobenzene. Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, December 1990.Google Scholar
  20. 20.
    Becke, A.D., Density-Functional Thermochemistry .3. The Role of Exact Exchange, J. Chem. Phys., 98 (1993) 5648.CrossRefGoogle Scholar
  21. 21.
    Lee, C., Yang, W. and Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37 (1988) 785.CrossRefGoogle Scholar
  22. 22.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, Jr., J.A.; Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y.; Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., and Pople, J.A., Gaussian 98, Revision A.11, Gaussian, Pittsburgh PA, 1998.Google Scholar
  23. 23.
    Todeschini, R. and Consonni, V. DRAGON software for the Calculation of Molecular Descriptors, web version 3.0 for Windows, 2003.Google Scholar
  24. 24.
    Todeschini, R. and Consonni, V. Handbook of Molecular Descriptors, Wiley-VCH, Weinheim and New York, 2000.Google Scholar
  25. 25.
    Davis, L. Handbook of Genetic Algorithms, Van Nostrand Reinhold, N.Y. (USA), 1991.Google Scholar
  26. 26.
    Devillers, J. Genetic Algorithms in Molecular Modeling, Academic Press, Ltd., London, 1996.Google Scholar
  27. 27.
    de Oliveira, D.B. and Gaudio, A.C., BuildQSAR: A new computer program for QSAR studies, Quant. Struct.-Act. Relat., 19 (2000) 599–601.CrossRefGoogle Scholar
  28. 28.
    Shishkov, I., Vilkov, L.V., Kovacs, A. and Hargittai. I., Molecular geometry of 2-nitrotoluene from gas phase electron diffraction and quantum chemical study, J. Mol. Structure, 445 (1998) 259–268.CrossRefGoogle Scholar
  29. 29.
    Sadova, N.I., Khaikin, L.S. and Vilkov, L.V., Certain questions of stereochemistry of nitrogen-compounds in the gaseous-phase, Russ. Chem. Rev., 61 (1992) 2129–2171.CrossRefGoogle Scholar
  30. 30.
    Chiş, V., Molecular and vibrational structure of 2,4-dinitrophenol: FT-IR, FT-Raman and quantum chemical calculations, Chem. Phys., 300 (2004) 1–3.CrossRefGoogle Scholar
  31. 31.
    Lampert, H., Mikenda, W. and Karpfen, A., Intramolecular hydrogen bonding in 2-hydroxybenzoyl compounds: Infrared spectra and quantum chemical calculations, J. Phys. Chem., 100 (1996) 7418–7424.CrossRefGoogle Scholar
  32. 32.
    Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics 74th Edition, CRC Press, Boca Raton, 2000.Google Scholar
  33. 33.
    Barve, J.V. and Pant, L.M., Structure of para-nitrotoluene, Acta Cryst., B27 (1971) 1158–1162.Google Scholar
  34. 34.
    Iwasaki, F. and Kawano, Y., Crystal and molecular-structure of ortho-nitrophenol, Acta Cryst., B34 (1978) 1286–1290.Google Scholar
  35. 35.
    Pandarese, F., Ungaretti, L. and Coda, A., Crystal-structure of a monoclinic phase of meta-nitrophenol, Acta Cryst., B31 (1975) 2671–2675.Google Scholar
  36. 36.
    Coppens, P. and Schmidt, G.M.J., The crystal structure of the a-modification of p-nitrophenol near 90 K, Acta Cryst., 18 (1965) 62–67.CrossRefGoogle Scholar
  37. 37.
    Mak, T.C.W. and Trotter, J., The crystal structure of p-chloronitrobenzene, Acta Cryst., 15 (1962) 1078–1080.CrossRefGoogle Scholar
  38. 38.
    Trotter, J. and Williston, C.S., Bond lengths and thermal vibrations in m-dinitrobenzene, Acta Cryst., 21 (1966) 285–288.CrossRefGoogle Scholar
  39. 39.
    Kagawa, T., Kawai, R. and Haisa, M., The crystal and molecular structure of 2,4-dinitrophenol, Acta Cryst., B32 (1976) 3171–3175.Google Scholar
  40. 40.
    Wilkins, A. and Small, R.W.H., Structure of 1-fluoro-2,4-dinitrobenzene, Acta Cryst., C47 (1991) 220–221.Google Scholar
  41. 41.
    Kovac, A. and Hargittai, I., Theoretical investigation of the additivity of structural substituent effects in benzene derivatives, Struct. Chem., 11 (2000) 193–201.CrossRefGoogle Scholar
  42. 42.
    Di Labio, G.A., Pratt, D.A. and Wright, J.S., Theoretical calculation of gas-phase ionization potentials for mono- and polysubstituted benzenes, Chem. Phys. Lett, 311 (1999) 215–220.CrossRefGoogle Scholar
  43. 43.
    Krygowski, T.M., Ejsmont, K., Stepien, B.T., Cyranski, M.K., Poater, J. and Sola, M. Relation between the substituent effect and aromaticity, J. Org. Chem., 69 (2004) 6634–6640.CrossRefPubMedGoogle Scholar
  44. 44.
    Linstrom, P.J. and Mallard, W.G., (Eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, (http://webbook.nist.gov), March 2003.
  45. 45.
    Bentley, T.W. and Johnstone, R.A.W., Aspects of mass spectra of organic compounds .8. calculation of ionization potentials of disubstituted benzenes and their importance in hammett correlations in mass spectrometry, J. Chem. Soc. B, 2 (1971) 263–270.CrossRefGoogle Scholar
  46. 46.
    Hehre, W.J., Radom, L., Schleyer, P. and Pople, J.A. Ab initio Molecular Orbital Theory, Wiley, New York, 1986.Google Scholar
  47. 47.
    Prabhumirashi, L.S. and Kunte, S.S., Solvent effects on electronic absorption spectra of nitrochlorobenzenes, nitrophenols and nitroanilines –I. Studies in nonpolar solvents, Spectrochim Acta A, 42A (1986) 435–439.CrossRefGoogle Scholar
  48. 48.
    Desfrançois, C., Périquet, V., Lyapustina, S.A., Lippa, T.P., Robinson, D.W., Bowen, K.H., Nonaka, H. and Compton, R.N., Electron binding to valence and multipole states of molecules: Nitrobenzene, para- and meta-dinitrobenzenes, J. Chem. Phys., 111 (1999) 4569–4576.CrossRefGoogle Scholar
  49. 49.
    Hall, L.H., Mohney, B. and Kier, L.B., The electrotopological state - structure information at the atomic level for molecular graphs, J. Chem. Inf. Comp Sci., 31 (1991) 76–82.CrossRefGoogle Scholar
  50. 50.
    Huuskonen, J., Estimation of water solubility from atom-type electrotopological state indices, Env. Toxicol. Chem., 20 (2001) 491–497.CrossRefGoogle Scholar
  51. 51.
    Livingstone, D.J., Ford, M.G., Huuskonen, J.J. and Salt, D.W., Simultaneous prediction of aqueous solubility and octanol/water partition coefficient based on descriptors derived from molecular structure, J. Comp. Aided Mol. Design, 15 (2001) 741–752.CrossRefGoogle Scholar
  52. 52.
    Ghose, A.K. and Crippen, G.M., Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition Coefficients ans a Measure of Hydrophobicity, J. Comput. Chem., 7 (1986) 565–577.CrossRefGoogle Scholar
  53. 53.
    Hall, L.H., Mohney, B. and Kier, L.B., An Electrotopological-State: An Atom Index for QSAR, Quant. Struct. Act. Relat., 10 (1991) 43–51.CrossRefGoogle Scholar
  54. 54.
    Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.) 3D QSAR in Drug Design, Vol. 2: Ligand-Protein Interactions and Molecular Similarity, Kluwer/ESCOM, Dordrecht (The Netherlands), 1998, pp. 339–353.Google Scholar
  55. 55.
    Devillers, J. and Balaban, A.T. (Eds.) Topological indices and related descriptors in QSAR and Drug Design, Gordon & Breach, Amsterdam, 2000.Google Scholar
  56. 56.
    Rietjens, I.C.M.M., Cnubben, N.H.P., Haandel, M., Tyrakowska, B., Soffers, A.E.M.F. and Vervoort, J., Different metabolic pathways of 2,5-difluoronitrobenzene and 2,5-difluoroaminobenzene compared to molecular orbital substrate characteristics, Chem. Biol. Interact., 94 (1995) 49–72.CrossRefPubMedGoogle Scholar
  57. 57.
    Bearden, A.P. and Schultz, T.W., Comparison of Tetrahymena and Pimephales toxicity based on mechanism of action, SAR and QSAR in Environ. Res., 9 (1998) 127–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Olexandr Isayev
    • 1
  • Bakhtiyor Rasulev
    • 1
    • 2
  • Leonid Gorb
    • 1
  • Jerzy Leszczynski
    • 1
  1. 1.Computational Center for Molecular Structure and InteractionsJackson State UniversityJacksonUSA
  2. 2.Institute of the Chemistry of Plant Substances AS RUzTashkentUzbekistan

Personalised recommendations