Molecular Diversity

, Volume 9, Issue 4, pp 305–316 | Cite as

High-loading polyglycerol supported reagents for Mitsunobu- and acylation-reactions and other useful polyglycerol derivatives

  • Sebastian Roller
  • Haixia Zhou
  • Rainer HaagEmail author
Full-length paper


In this paper we present soluble dendritic polyglycerol (PG) supported reagents PG-DEAD, PG-PPh3, and PG-DCC as well as scavengers PG-carbonate, PG-carbazate, and PG-amine, which all have been synthesized in high overall conversions and yields using simple purification techniques. The supported reagents have been used simultaneously in Mitsunobu and acylation reactions. All polymeric reagents and scavengers can be removed by simple precipitation/filtration protocols to give chromatography-free products of high purity. In the course of the syntheses of the polymeric reagents three intermediates turned out to be precious polyglycerol derivatives: a mixed carbonate as an electrophilic derivative, polyglyceryl carbazate as a scavenger for carbonyl compounds, as well as polyglycerylamines as amino analogues of polyglycerol.

Key Words

dendrimer hyperbranched polymer polyglycerol polymeric reagent scavenger soluble polymeric support supported azodicarboxylate supported carbodiimide supported triphenylphosphine 









degree of branching


N,N′-dicyclohexyl carbodiimide




N,N′-dicyclohexyl urea














matrix assisted LASER desorption ionization time of flight


monomethylated poly(ethylene glycol)


number–average molar mass


mesyl, methansulfonyl




molecular weight cut-off


nuclear magnetic resonance


pro analysi






ring opening metathesis polymerization






thin layer chromatography


tosyl, p-toluenesulfonyl


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    (a) Baxendale, I.R., Storer, R.I. and Ley, S.V., Supported reagents and scavengers in multi-step organic synthesis, in Buchmeiser, M.R., Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 53–136; (b) Ley, S.V., Baxendale, I.R., Bream, R.N., Jackson, P.S., Leach, A.G., Longbottom, D.A., Nesi, M., Scott, J.S., Storer, R.I. and Taylor, S.J., Multi-step organic synthesis using solid-supported reagents and scavengers: a new paradigm in chemical library generation, J. Chem. Soc., Perkin Trans. 1 (2000) 3815–4195.Google Scholar
  2. 2.
    (a) Kirschning, A., Monenschein, H. and Wittenberg, R., Funktionalisierte Polymere – zukunftsträchtige Werkzeuge für die Chemie in Lösung und die automatisierte Parallelsynthese, Angew. Chem., 113 (2001) 670–701; (b) Bhattacharya, S., Polymer-Supported Reagents and Catalysts: Recent Advances in Synthetic Applications, Comb. Chem. High Throughput Screening, 3 (2000) 65–92; (c) Bhattacharyya, S., Polymer-assisted solution-phase organic synthesis: Advances in multi-step synthetic applications, Indian J. Chem., Sect. B, 40 (2001) 878–890; (d) Brümmer, O., Clapham, B. and Janda, K.D., Recent developments and applications of polymer-supported reagents in synthetic organic chemistry, Curr. Opin. Drug. Discov. Dev., 3 (2000) 462–473; (e) Flynn, D.L., Devraj, R.V. and Parlow, J.J., Recent advances in polymer-assisted solution-phase chemical library synthesis and purification, Curr. Opin. Drug. Discov. Dev., 1 (1998) 41–50; (f) Wipf, P., Synthetic aspects of combinatorial chemistry, Pharmaceutical News, 9 (2002) 157–169; (g) Smith, S.D. and Alexandratos, S.D., Ion-selective polymer-supported reagents, Solvent Extr. Ion Exchange, 18 (2000) 779–807.Google Scholar
  3. 3.
    Haag, R., Dendrimers and hyperbranched polymers as high-loading supports for organic synthesis, Chem. Eur. J., 7 (2001) 327–335.CrossRefGoogle Scholar
  4. 4.
    Harwig, C.W., Gravert, D.J. and Janda, K.D., Soluble polymers: New options in both traditional and combinatorial synthesis, Chemtracts – Org. Chem., 12 (1999) 1–26.Google Scholar
  5. 5.
    Tzschucke, C.C., Markert, C., Bannwarth, W., Roller, S., Hebel, A. and Haag, R., Modern separation techniques for the efficient workup in organic synthesis, Angew. Chem. Int. Ed., 41 (2002) 3964–4001.Google Scholar
  6. 6.
    Barrett, A.G.M., Hopkins, B.T. and Köbberling, J., ROMPgel Reagents in Parallel Synthesis, Chem. Rev., 102 (2002) 3301–3324.CrossRefGoogle Scholar
  7. 7.
    (a) Dickerson, T.J., Reed, N.N. and Janda, K.D., Soluble polymers as scaffolds for recoverable catalysts and reagents, Chem. Rev., 102 (2002) 3325–3334; (b) Toy, P.H. and Janda, K.D., Soluble polymer-supported organic synthesis, Acc. Chem. Res., 33 (2000) 546–554; (c) Dickerson, T.J., Reed, N.N. and Janda, K.D., Soluble polymers as catalyst and reagent platforms: liquid-phase methodologies, In Buchmeiser, M.R., Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 241–276; (d) Wentworth Jr., P., Recent developments and applications of liquid-phase strategies in organic synthesis, Trends Biotechnol., 17 (1999) 448–452; (e) Bergbreiter, D.E., Polymer supports in organic catalysis and synthesis, Curr. Opin. Drug. Discov. Dev., 4 (2001) 736–744; (f) Bergbreiter, D.E., Alternative Polymer Supports for Organic Chemistry, Med. Res. Rev., 19 (1999) 439–450.Google Scholar
  8. 8.
    Wentworth Jr., P. and Janda, K.D., Liquid-phase chemistry: Recent advances in soluble polymer-supported catalysts, reagents and synthesis, Chem. Commun., (1999) 1917–1924.Google Scholar
  9. 9.
    Oosterom, G.E., Reek, J.N.H., Kamer, P.C.J. and van Leeuwen, P.W.N.M., Transition metal catalysis using functionalized dendrimers, Angew. Chem. Int. Ed., 40 (2001) 1828–1849.CrossRefGoogle Scholar
  10. 10.
    Newkome, G.R., Moorefield, C.N. and Vögtle, F., Dendrimers and Dendrons, Wiley-VCH, Weinheim, 2001.Google Scholar
  11. 11.
    (a) Haag, R. and Roller, S., Dendritic polymers as high-loading supports for organic synthesis and catalysis, in Buchmeiser, M.R., Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 305–344; (b) van Heerbeek, R., Kamer, P.C.J., van Leeuwen, P.W.N.M. and Reek, J.N.H., Dendrimers as support for recoverable catalysts and reagents, Chem. Rev., 102 (2002) 3717–3756; (c) Klein Gebbink, R.J.M., Kruithof, C.A., van Klink, G.P.M. and van Koten, G., Dendritic supports in organic synthesis, Rev. Mol. Biotechnol., 90 (2002) 183–193.Google Scholar
  12. 12.
    Schlenk, C., Kleij, A.W., Frey, H. and van Koten, G., Macromolecular-multisite catalysts obtained by grafting diaminoaryl palladium(II) complexes onto a hyperbranched-polytriallylsilane support, Angew. Chem. Int. Ed., 39 (2000) 3445–3447.CrossRefGoogle Scholar
  13. 13.
    Kreiter, R., Kleij, A.W., Klein Gebbink, R.J.M. and van Koten, G., Dendritic Catalysts, In Vögtle, F. and Schalley, C.A., Topics in Current Chemistry, Vol. 217, Springer-Verlag, Berlin Heidelberg, 2001, pp. 163–199.Google Scholar
  14. 14.
    Frey, H. and Haag, R., Hyperbranched polymers in industry, In Buschow, K.H.J., Cahn, R.H., Flemings, M.C., Ilschner, B., Kramer, E.J. and Majahan, S., Encyclopedia of Materials: Science and Technology, Elsevier Science, Oxford, 2001, pp. 3997–4000.Google Scholar
  15. 15.
    Haag, R., Sunder, A., Hebel, A. and Roller, S., Dendritic aliphatic polyethers as high-loading soluble supports for carbonyl compounds and parallel membrane separation techniques, J. Comb. Chem., 4 (2002) 112–119.CrossRefGoogle Scholar
  16. 16.
    Haag, R., Sunder, A. and Stumbé, J.-F., An approach to glycerol dendrimers and pseudo-dendritic polyglycerols, J. Am. Chem. Soc., 122 (2000) 2954–2955.CrossRefGoogle Scholar
  17. 17.
    Hebel, A. and Haag, R., Polyglycerol as a high-loading support for boronic acids with application in solution-phase suzuki cross-couplings, J. Org. Chem., 67 (2002) 9452–9455.CrossRefGoogle Scholar
  18. 18.
    Roller, S., Siegers, C. and Haag, R., Dendritic polyglycerol as a high-loading support for parallel multistep synthesis of GABA lactam analogues, Tetrahedron, 60 (2004) 8711–8720.CrossRefGoogle Scholar
  19. 19.
    Sunder, A., Hanselmann, R., Frey, H. and Mülhaupt, R., Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization, Macromolecules, 32 (1999) 4240–4246.CrossRefGoogle Scholar
  20. 20.
    Sunder, A., Mülhaupt, R., Haag, R. and Frey, H., Hyperbranched polyether polyols: A modular approach to complex polymer architectures, Adv. Mater., 12 (2000) 235–239.CrossRefGoogle Scholar
  21. 21.
    For further information see:
  22. 22.
    (a) Mitsunobu, O., The use of diethyl azodicarboxylate and tri-phenylphosphine in synthesis and transformation of natural products, Synthesis, (1981) 1–28; (b) Hughes, D.L., The Mitsunobu reaction, In Paquette, L.A., Organic Reactions, Vol. 42, Wiley, 1992, pp. 335–656; (c) Ahn, C., Correia, R. and DeShong, P., Mechanistic Study of the Mitsunobu Reaction, J. Org. Chem., 67 (2002) 1751–1753; (d) Ahn, C. and DeShong, P., An approach to the stereoselective synthesis of syn- and anti-1,3-diol derivatives. Retention of configuration in the Mitsunobu reaction, J. Org. Chem., 67 (2002) 1754–1759.Google Scholar
  23. 23.
    (a) Amos, R.A., Emblidge, R.W. and Havens, N., Esterification using a polymer-supported phosphine reagent, J. Org. Chem., 48 (1983) 3598–3600; (b) Tunoori, A.R., Dutta, D. and Georg, G.I., Polymer-bound triphenylphosphine as traceless reagent for Mitsunobu reactions in combinatorial chemistry: Synthesis of aryl ethers from phenols and alcohols, Tetrahedron Lett., 39 (1998) 8751–8754; (c) Charette, A.B., Janes, M.K. and Boezio, A.A., Mitsunobu Reaction Using Triphenylphosphine Linked To Non-Cross-Linked Polystyrene, J. Org. Chem., 66 (2001) 2178–2180; (d) Pelletier, J.C. and Kincaid, S., Mitsunobu reaction modifications allowing product isolation without chromatography: Application to a small parallel library, Tetrahedron Lett., 41 (2000) 797–800; (e) Alexandratos, S.D. and Miller, D.H.J., Microenvironmental effect in polymer-supported reagents. 1. Influence of copolymer architecture on the Mitsunobu reaction, Macromolecules, 29 (1996) 8025–8029; (f) Shelley, C.A. and Alexandratos, S.D., Polymer-supported reagents in the Mitsunobu reaction: A comparative study of the esterification and etherification reactions, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 39 (1998) 782–783.Google Scholar
  24. 24.
    (a) Barrett, A.G.M., Roberts, R.S. and Schröder, J., Impurity annihilation: Chromatography-free parallel Mitsunobu reactions, Org. Lett., 2 (2000) 2999–3001; (b) Arnold, L.D., Assil, H.I. and Vederas, J.C., Polymer-supported alkyl azodicarboxylates for Mitsunobu reactions, J. Am. Chem. Soc., 111 (1989) 3973–3976.Google Scholar
  25. 25.
    Lan, P., Porco Jr., J.A., South, M.S. and Parlow, J.J., The development of a chromatography-free mitsunobu reaction: Synthesis and applications of an anthracene-tagged phosphine reagent, J. Comb. Chem., 5 (2003) 660–669.CrossRefGoogle Scholar
  26. 26.
    Starkey, G.W., Parlow, J.J. and Flynn, D.L., Chemically-tagged Mitsunobu reagents for use in solution-phase chemical library synthesis, Bioorg. Med. Chem. Lett., 8 (1998) 2385–2390.CrossRefGoogle Scholar
  27. 27.
    Meth-Cohn, O., Moore, C. and van Rooyen, P.H., The synthesis and chemistry of 4-aza-azulene, J. Chem. Soc. Perkin Trans. I (1985) 1793–1802.Google Scholar
  28. 28.
    Jordan, E.A. and Thorne, M.P., The thermal decomposition of carbamates and carbonates of 2-arylpropan-2-ols and 1-aryl-phenylethanols: Temperature and solvent effects on the reaction constant and kinetic isotope effects, J. Chem. Soc. Perkin Trans. II, 4 (1984) 647–654.Google Scholar
  29. 29.
    Yamamoto, Y., Yumoto, M. and Yamada, J.-i., Synthesis of a non-symmetric Azodicarbonyl Compound and its regioselective Reaction with organometallic Reagents, Tetrahedron Lett., 32 (1991) 3079–3082.Google Scholar
  30. 30.
    Rabjohn, N., The synthesis and reactions of diazodicarboxylates, J. Am. Chem. Soc., 70 (1948) 1181–1183.CrossRefGoogle Scholar
  31. 31.
    To avoid complex and confused names, we designate here the polyglycerol residue which does not contain the original OH-groups as ‘poly-glyceryl’ residue.Google Scholar
  32. 32.
    (a) Mackay, D. and McIntyre, D.D., Mechanistic aspects of the methoxide-catalyzed transformation of 4-acyloxy-1,3,4-oxadiazines to N-amino-oxazolidonylhydrazones, Can. J. Chem., 62 (1984) 355–360; (b) Harris, J.M., Bolessa, E.A., Mendonca, A.J., Feng, S.-C. and Vederas, J.C., Synthesis of chiral diazanedicarboxylate and diazenedicarboxylate esters: Electrophilic amination reactions of achiral ester and amide enolates, J. Chem. Soc. Perkin Trans. I, 15 (1995) 1945–1950; (c) Harris, J.M., Bolessa, E.A. and Vederas, J.C., Synthesis of macrocyclic diazanedicarboxylate and diazenedicarboxylate esters containing a steroid skeleton: An unusual oxidation of bromide to bromine by a strained diazenedicarboxylate ester. X-Ray molecular structure of 3α-(3-hydroxypropyl)-24-nor-5β-cholan-7α-ol diazane-1,2-dicarboxylate cyclic diester, J. Chem. Soc. Perkin Trans. I, 15 (1995) 1951–1960; (d) Rosenbaum, C. and Waldmann, H., Solid phase synthesis of cyclic peptides by oxidative cyclative cleavage of an aryl hydrazide linker – synthesis of stylostatin 1, Tetrahedron Lett., 42 (2001) 5677–5680; (e) Carpino, L.A. and Han, G.Y., The 9-Fluorenylmethoxycarbonyl Amino-Protecting Group, J. Org. Chem., 37 (1972) 3404–3409; (f) Carpino, L.A., Terry, P.H. and Crowley, P.J., Examination of Synthetic Routes to Monosubstituted Diimides. II. Synthesis of t-Butyl Aryl- and Acylazoformates. Acid-Induced Cleavage of the Thionocarbo-t-butoxy Group, J. Org. Chem., 26 (1961) 4336–4340; (g) Bock, H. and Kroner, J., Substituenten-Effekte bei Azodicarbonsäure-Derivaten und ihre Deutung durch Hückel-MO-Rechnungen, Chem. Ber., 99 (1966) 2039–2051; (h) Holden, D.A., Synthesis and spreading behaviour of some reactive derivatives of long-chain alcohols and carboxylic acids, Can. J. Chem., 62 (1984) 574–579.Google Scholar
  33. 33.
    Ingold, K. and Weaver, S.D., The Additive Formation of Four-membered Rings. Part VI. The Addition of Azo-compounds to Ethylenes and some Transformations of the Dimethylene-1:2-di-imine Ring, J. Am. Chem. Soc., 127 (1925) 378–387.Google Scholar
  34. 34.
    Yoakim, C., Guse, I., O'Meara, J.A. and Thavonekham, B., Removable phosphine reagents for the Mitsunobu reaction, Synlett, 4 (2003) 473–476.Google Scholar
  35. 35.
    (a) Hassner, A. and Alexanian, V., Direct room temperature esterification of carboxylic acids, Tetrahedron Lett., 46 (1978) 4475–4478; (b) Gilon, C. and Klausner, Y., A novel method for the facile synthesis of depsipeptides, Tetrahedron Lett., 40 (1979) 3811–3814; (c) Ziegler, F.E. and Berger, G.D., A mild method for the esterification of fatty acids, Synth. Commun., 9 (1979) 539–543; (d) Neises, B. and Steglich, W., Einfaches Verfahren zur Veresterung von Carbonsäuren, Angew. Chem., 90 (1978) 556–557.Google Scholar
  36. 36.
    (a) Dhaon, M.K., Olsen, R.K. and Ramasamy, K., Esterification of N-Protected α-Amino Acids with Alcohol/Carbodiimide/4-(Dimethylamino)pyridine. Racemization of Aspartic and Glutamic Acid Derivatives, J. Org. Chem., 47 (1982) 1962–1965; (b) Tanaka, K., Nakanishi, K. and Berova, N., Absolute stereochemistry of allylic alcohols, amines, and other ene moieties: A microscale cross metathesis/exciton chirality protocol, J. Am. Chem. Soc., 125 (2003) 10802–10803; (c) Adamczyk, M., Fishpaugh, J.R. and Heuser, K.J., Preparation of succinimidyl and pentafluorophenyl active esters of 5- and 6- Carboxyfluorescein, Bioconjugate Chem., 8 (1997) 253–255; (d) Toyota, S., Shimasaki, T., Tanifuji, N. and Wakamatsu, K., Experimental and theoretical investigations of absolute stereochemistry and chiroptical properties of enantiopure 2,2-substituted 9,9-bianthryls, Tetrahedron: Asymmetry, 14 (2003) 1623–1629; (e) Benoiton, N.L., Lee, Y.C. and Chen, F.M.F., Identification and suppression of decomposition during carbodiimide-mediated reactions of Boc-amino acids with phenols, hydroxylamines and amino acid ester hydrochlorides, Int. J. Peptide Protein Res., 41 (1993) 583–594; (f) Pottorf, R.S., 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide Hydrochloride, In Paquette, L.A., Encyclopedia of Reagents for Organic Synthesis, Vol. 4, Wiley, Chichester, New York, Brisbane, Toronto, Singapore, 1995.Google Scholar
  37. 37.
    Crosignani, S., White, P.D. and Linclau, B., Polymer-Supported O-Alkylisoureas: Useful Reagents for the O-Alkylation of Carboxylic Acids, J. Org. Chem., 69 (2004) 5897–5905.CrossRefGoogle Scholar
  38. 38.
    (a) Weinshenker, N.M. and Shen, C.-M., Polymeric reagents I. Synthesis of an insoluble polymeric carbodiimide, Tetrahedron Lett., 32 (1972) 3281–3284; (b) Chou, T.-S., Lee, S.-J. and Chang, L.-J., Supported carbodiimides. A comparison study, Bull. Inst. Chem. Acad. Sinica, 34 (1987) 27–33.Google Scholar
  39. 39.
    Jamieson, C., Congreve, M.S., Emiabata-Smith, D.F. and Ley, S.V., A rapid approach for the optimisation of polymer supported reagents in synthesis, Synlett (2000) 1603–1607.Google Scholar
  40. 40.
    Crosignani, S., White, P.D., Steinauer, R. and Linclau, B., Polymer-supported O-benzyl and O-allyisoureas: Convenient preparation and use in ester synthesis from carboxylic acids, Org. Lett., 5 (2003) 853–856.CrossRefGoogle Scholar
  41. 41.
    Guisado, O., Martínez, S. and Pastor, J., A novel, facile methodology for the synthesis of N,N-bis(tert-butoxycarbonyl)-protected guanidines using polymer-supported carbodiimide, Tetrahedron Lett., 43 (2002) 7105–7109.CrossRefGoogle Scholar
  42. 42.
    Fresneda, P.M. and Molina, P., Application of iminophosphorane-based methodologies for the synthesis of natural products, Synlett, (2004) 1–17.Google Scholar
  43. 43.
    Gololobov, Y.G., Zhmurova, I.N. and Kasukhin, L.F., Sixty years of Staudinger reaction, Tetrahedron, 37 (1981) 437–472.CrossRefGoogle Scholar
  44. 44.
    Salazar, R., Fomina, L. and Fomine, S., Functionalized polyglycidol-CuCl-complexes as catalysts in the oxidative coupling reaction of terminal acetylenes, Polym. Bull., 47 (2001) 151–158.CrossRefGoogle Scholar
  45. 45.
    (a) Saito, T., Nakane, M., Endo, M., Yamashita, H., Oyamada, Y. and Motoki, S., Conjugated heterocumulenes. Synthesis of C=C-conjugated carbodiimides by a Wittig-type reaction of iminophosphoranes with isocyanates and their cycloadditions, Chem. Lett., (1986) 135–138; (b) Tsuge, O., Kanemasa, S. and Matsuda, K., One-Pot Synthesis of N-((Trimethylsilyl)methyl)imines and (Trimethylsilyl)methyl-Substituted Heterocumulenes from (Trimethylsilyl)methyl Azide, J. Org. Chem., 49 (1984) 2688–2691; (c) Saito, T., Ohkubo, T., Kuboki, H., Maeda, M., Tsuda, K., Karakasa, T. and Satsumabayashi, S., Thermal or Lewis acid-promoted electrocyclisation and hetero Diels-Alder cycloaddition of α,β-unsaturated (conjugated) carbodiimides: A facile synthesis of nitrogen-containing heterocycles, J. Chem. Soc., Perkin Trans. 1, (1998) 3065–3080.Google Scholar
  46. 46.
    Gottlieb, H.E., Kotlyar, V. and Nudelman, A., NMR chemical shifts of common laboratory solvents as trace impurities, J. Org. Chem., 62 (1997) 7512–7515.CrossRefGoogle Scholar
  47. 47.
    Haag, R., Mecking, S. and Türk, H., Patent Application DE 10211664A1, (2002).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Organische ChemieUniversität DortmundDortmundGermany

Personalised recommendations