Mechanics of Composite Materials

, Volume 54, Issue 6, pp 697–718 | Cite as

Constructing Yield Loci for Rigid-Plastic Reinforced Plates Considering the 2D Stress State in Fibers

  • T. P. Romanova
  • A. P. YankovskiiEmail author

Models of unidirectionally and orthogonally fiber-reinforced hybrid media of a regular periodic structure allowing one to determine the yield loci for these composites are constructed. Phase materials of the compositions are isotropic, and their mechanical behavior is described by the associated flow rule for rigid-plastic bodies with the Tresca yield condition. A plane stress state is assumed in the composition and all its components, and fibers are oriented along the directions of principal stresses in the composite body. The cases of rectangular and arbitrary cross sections of reinforcing fibers are considered. Analytical expressions for equations describing the regimes of yield conditions are obtained. Different passages to the limit of a homogeneous medium are investigated. Yield loci calculated by the models proposed and the widely used structural model with a one-dimensional stress state in fibers are compared. Yield loci in the case of imperfect adhesion between the reinforcement and binder material are constructed.


unidirectional reinforcement orthogonal reinforcement hybrid composites rigid-plastic material Tresca yield condition yield loci structural model of composite plane stress state 


  1. 1.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymer and Composite Materials, Riga, Zinatne (1980).Google Scholar
  2. 2.
    R. F. Gibson, Principles of Composite Material Mechanics, 4th ed., Taylor & Francis Group, LLC (2015).Google Scholar
  3. 3.
    A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, “Review of advanced composite structures for naval ships and submarines,” Compos. Struct., 53, No. 1, 21-42 (2001). DOI: CrossRefGoogle Scholar
  4. 4.
    M. Bannister, “Challenger for composites into the next millennium – a reinforcement perspective,” Composites: Part A, Appl. Sci. and Manufact., 32, 901-910 (2001). DOI: Scholar
  5. 5.
    N. A. Abrosimov, A. V. Elesin, and N. A. Novoseltseva, “Numerical analysis of the effect of reinforcement structure on the dynamic behavior and ultimate deformability of composite shells of revolution,” Mech. Compos. Mater., 50, No. 2, 223-232 (2014). DOI: Scholar
  6. 6.
    M. S. Qatu, R.W. Sullivan, and W. Wang, “Recent research advances on the dynamic analysis of composite shells: 2000-2009,” Compos. Struct., 93, 14-31 (2010). DOI: Scholar
  7. 7.
    E. Malachowski, G. L’vov, and S. Daryazadeh, “Numerical prediction of the parameters of a yield criterion for fibrous composites,” Mech. Compos. Mater., 53, No. 5, 589-600 (2017). DOI: CrossRefGoogle Scholar
  8. 8.
    A. P. Yankovskii, “Viscoplastic dynamics of metallic composite shells of layered-fibrous structure under the action of loads of explosive type. I. Statement of the problem and method for solution,” J. Math. Sci., 192, No. 6, 623-633 (2013). DOI: CrossRefGoogle Scholar
  9. 9.
    B. S. Sarbaev, “Analysis of load-carrying capacity of layered fibrous composite materials,” Vest. MGTU, Ser. Mashinostoenie, No. 4, 59-72 (2000).Google Scholar
  10. 10.
    J. Zickel, “Isotensoid pressure vessels,” ARS J., 32, 950-951 (1962).Google Scholar
  11. 11.
    A. Kelly and W. R. Tyson, “Tensile properties of fiber-reinforced metals: copper/tungsten and copper/molybdenum,” J. Mech. Phys. Solids, 13, No. 6, 329-350 (1965). DOI: CrossRefGoogle Scholar
  12. 12.
    Yu. V. Nemirovskii, “On the condition of plasticity (strength) for a reinforced layer,” Appl. Mech. and Tech. Fiz., 10, No. 5, 81-88 (1969). DOI: Scholar
  13. 13.
    Yu. V. Nemirovskii, “Ultimate equilibrium of multilayer reinforced axisymmetric shells,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 6, 80-89 (1969).Google Scholar
  14. 14.
    Yu. V. Nemirovsky and B. S. Resnikov, “On the limit equilibrium of reinforced slabs and effectiveness of their reinforcement,” Arch. Inż. Ląd., 21, No. 1, 57-67 (1975).Google Scholar
  15. 15.
    Z. Mróz and F. G. Shamiev, “Simplified yield condition for fiber-reinforced plates and shells,” Arch. Inż. Ląd., 25, No. 3, 463-476 (1979).Google Scholar
  16. 16.
    E. A. Movsumov and F. G. Shamiev, “Yield condition for circular cylindrical shells made of a fiber-reinforced composite,” Mech. Compos. Mater., 42, No. 5, 459-466 (2006). DOI: CrossRefGoogle Scholar
  17. 17.
    Yu. V. Nemirovskii and A. P. Yankovskii, “Effect of reinforcement structure and shape of profile on the ultimate equilibrium of transversely bent circular plates,” Vest. NNGU, Ser. Mekhanika, 1, No. 8, 123-133 (2006).Google Scholar
  18. 18.
    I. N. Kubishev, “Ultimate load for a composite circular plate with various fixation conditions,” Mekh. Mash. Mekhan. Mater., 1, No. 15, 56-60 (2011).Google Scholar
  19. 19.
    M. H. Ilyasov and A. A. Jahangirov, “Yield hypersurfaces of a three-layer composite shell with a fiber-reinforced middle layer,” Mech. Compos. Mater., 50, No. 3, 343-352 (2014). DOI: CrossRefGoogle Scholar
  20. 20.
    T. P. Romanova, “Modeling the dynamic bending of rigid-plastic hybrid composite elliptical plates with a rigid insert,” Mech. Compos. Mater., 53, No. 5, 565-578 (2017). DOI: CrossRefGoogle Scholar
  21. 21.
    Yu. N. Rabotnov, Introduction into Fracture Mechanics [in Russian], Nauka, Fizmatgiz, Мoscow (1987).Google Scholar
  22. 22.
    Handbook of Composite Mateials [in Russian], eds. V. V. Vasil’ev and Yu. M. Tarnopolskii, Мashinostoenie, Moscow (1990).Google Scholar
  23. 23.
    N. S. Bakhvalov and G. P. Panasenko, Averaging Processes in Periodic Media. Mathematical Problems of the Mechanics of Composite Materials [in Russian], Nauka, Мoscow (1984).Google Scholar
  24. 24.
    G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  25. 25.
    T. D. Shermergor, Theory of Elasticity of Microheterogeneous Media [in Russian], Nauka, Moscow (1977).Google Scholar
  26. 26.
    R. Christensen, Mechanics of Composite Materials, John Willey & Sons, N. Y. (1982).Google Scholar
  27. 27.
    D. Kolarov, A. Baltov, and N. Boncheva, Mechanics of Plastic Media [in Russian], Mir, Moscow (1979).Google Scholar
  28. 28.
    N. V. Banichuk, V. V. Kobelev, and R. B. Rikards, Optimization of Structural Elements of Composite Materials [in Russian], Mashinostoenie, Мoscow (1988).Google Scholar
  29. 29.
    Yu. V. Nemirovsky and B. S. Resnikov, Strength of Structural Elements of Composite Materials [in Russian], Nauka, Novosibirsk (1986).Google Scholar
  30. 30.
    K. A. Matveev and N. V. Pustovoi, Variational Methods for Studying the Stability of Anisotropic Plates under Temperature and Force Loadings [in Russian], Izd. NGTU, Novosibirsk (2005).Google Scholar
  31. 31.
    Composite Materials. Handbook [in Russian], ed. D. M. Karpinos, Naukova Dumka, Kiev (1985).Google Scholar
  32. 32.
    L. M. Kachanov, Fundamentals PlasticityTheory [in Russian], Nauka, Moscow (1969).Google Scholar
  33. 33.
    V. V. Bolotin, “Basic equations of the theory of reinforced media,” Polymer Mech., 1, No. 2, 27-37 (1965). DOI: Scholar
  34. 34.
    A. P. Yankoskii, “Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model,” Mech. Compos. Mater., 46, No. 5, 451-460 (2010). DOI: CrossRefGoogle Scholar
  35. 35.
    A. P. Yankoskii, “Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 2. Comparison with experiment,” Mech. Compos. Mater., 46, No. 6, 659-666 (2010). DOI: CrossRefGoogle Scholar
  36. 36.
    H. Hopkins and W. Prager, “The load carrying capacities of circular plates,” J. Mech. Phys. Solids, 2, No. 1, 1-13 (1953). Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.S. A. Khristianovich Institute of Theoretical and Applied Mechanics, SB RANNovosibirskRussia

Personalised recommendations