Advertisement

Mechanics of Composite Materials

, Volume 55, Issue 5, pp 617–626 | Cite as

Tensile Properties of Graphene-Based Nanocomposites: a Comparative Study of Ultrasonication and Microcompounding Processing Methods

  • M. BourchakEmail author
  • M. N. Nahas
  • B. Kada
  • A. N. Khan
  • A. Al-Garni
  • K. A. Juhany
Article
  • 12 Downloads

Two methods are commonly used to disperse graphene nanoplatelets (GNPs) in a polymer matrix system (PMS) — microcompounding and ultrasonication. In this work, GNPs-PMS nanocomposite specimens of different weight ratios were first produced using microcompounding. Results of tensile tests showed that, on introduction of 0.5 wt.% GNPs into the PMS, its ultimate tensile strength (UTS) increased by 15% and the elastic modulus by 11%. Based on these results, 0.5 wt.% GNPs were also used in producing specimens by the ultrasonication technique, which showed a 69% drop in the UTS and a 227% increase in the elastic modulus. These findings demonstrate that the mechanical properties of GNPs-PMS nanocomposites are highly sensitive to their manufacturing method.

Keywords

processing technique graphene nanoplatelets epoxy tensile strength scanning electron microscopy 

Notes

Acknowledgment

This Project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (202/135/1431), whose financial support is gratefully acknowledged by the authors.

References

  1. 1.
    R. Atif and F. Inam, “Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers,” Beilstein Journal of Nanotechnology, 7, No. 1, 1174-1196 (2016).Google Scholar
  2. 2.
    R. Atif, I. Shyha, and F. Inam, “Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites—A review,” Polymers, 8, No. 8, 281-317 (2016).Google Scholar
  3. 3.
    S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, 4, No. 4, 217-224 (2009).Google Scholar
  4. 4.
    R. Atif and F. Inam, “Influence of macro-topography on damage tolerance and fracture toughness of 0.1 wt % multilayer graphene/clay-epoxy nanocomposites,” Polymers, 8, No. 7, 239-267 (2016).Google Scholar
  5. 5.
    E. Y. Choi, W. S. Choi, Y. B. Lee, and Y. Y. Noh, “Production of graphene by exfoliation of graphite in a volatile organic solvent,” Nanotechnology, 22, No. 36, 365601-365606 (2011).Google Scholar
  6. 6.
    X. Wang, J. Jin, and M. Song, “An investigation of the mechanism of graphene toughening epoxy,” Carbon, 65, 324-333 (2013).Google Scholar
  7. 7.
    Z. Li, R. Wang, R.J. Young, L. Deng, F. Yang, L. Hao, W. Jiao, and W. Liu, “Control of the functionality of graphene oxide for its application in epoxy nanocomposites,” Polymer, 54, No. 23, 6437-6446 (2013).Google Scholar
  8. 8.
    S. Liu, H. Yan, Z. Fang, and H. Wang, “Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin,” Composites Science and Technology, 90, 40-47 (2014).Google Scholar
  9. 9.
    P-C. Ma, N. A. Siddiqui, G. Marom, and J-K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Compos. Part A Appl. Sci. Manuf., 41, 1345–1367 (2010).Google Scholar
  10. 10.
    S. Bal and S. S Samal, “Carbon nanotube reinforced polymer composites—A state of the art,” Bulletin of Materials Science, 30, No. 4, 379-386 (2007).Google Scholar
  11. 11.
    S. Parveen, S. Rana, and R. Fangueiro, “A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites,” Journal of Nanomaterials, 2013, 1-19 (2013).Google Scholar
  12. 12.
    C-X. Liu and J-W. Choi, “Improved dispersion of carbon nanotubes in polymers at high concentrations,” Nanomaterials, 2, 329–347 (2012).Google Scholar
  13. 13.
    S. K. and S. Sinha, “Epoxy-based carbon nanotubes reinforced composites,” in Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications, InTech, INTECH Open Access Publisher (2012).Google Scholar
  14. 14.
    J. J. Karippal, H. N. N. Murthy, K. S. Rai, M. Krishna, and M. Sreejith, “The processing and characterization of MWCNT/epoxy and CB/epoxy nanocomposites using twin screw extrusion,” Polymer-Plastics Technology and Engineering, 49, No. 12, 1207-1213 (2010).Google Scholar
  15. 15.
    S. T. Buschhorn, M. H. G. Wichmann, J. Sumfleth, K. Schulte, S. Pegel, and G. R. Kasaliwal, “Charakterisierung der Dispersionsgüte von Carbon Nanotubes in Polymer-Nanokompositen,” Chemie Ingenieur Technik, 83, No. 6, 767-781 (2011).Google Scholar
  16. 16.
    S. I. Abdullah and M. N. M. Ansari, “Mechanical properties of graphene oxide (GO)/epoxy composites,” HBRC Journal, 11, No. 2, 151–156 (2015).Google Scholar
  17. 17.
    D. Galpaya, M. Wang, C. Yan, M. Liu, N. Motta, and E. R. Waclawik, “Fabrication and characterisation of graphene oxide-epoxy nanocomposite,” Fourth International Conference on Smart Materials and Nanotechnology in Engineering, September 2013.Google Scholar
  18. 18.
    E. Dervishi, F. Hategekimana, L. Boyer, F. Watanabe, T. Mustafa, A. Biswas, A. R. Biris, and A. S. Biris, “The effect of carbon nanotubes and graphene on the mechanical properties of multi-component polymeric composites,” Chemical Physics Letters, 590, 126–130 (2013).Google Scholar
  19. 19.
    B. Debelak and K. Lafdi, “Use of exfoliated graphite filler to enhance polymer physical properties,” Carbon, 45, No. 9, 1727–1734 (2007).Google Scholar
  20. 20.
    C. E. Corcione, F. Freuli, and A. Maffezzoli, “The aspect ratio of epoxy matrix nanocomposites reinforced with graphene stacks,” Polymer Engineering & Science, 53, No. 3, 531–539 (2012).Google Scholar
  21. 21.
    L. Ramos-Galicia, L. N. Mendez, A. L. Martínez-Hernández, A. Espindola-Gonzalez, I. R. Galindo-Esquivel, R. Fuentes-Ramirez, and C. Velasco-Santos, “Improved performance of an epoxy matrix as a result of combining graphene oxide and reduced graphene,” Int. J. Polym. Sci., 2013, 1-7 (2013).Google Scholar
  22. 22.
    R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors (Switzerland), 15, No. 8, 18666–18713 (2015).Google Scholar
  23. 23.
    W. Liu, K. L. Koh, J. Lu, L. Yang, S. Phua, J. Kong, Z. Chen, and X. Lu, “Simultaneous catalyzing and reinforcing effects of imidazole-functionalized graphene in anhydride-cured epoxies,” J. Mater. Chem., 22, No. 35, 18395-18402 (2012).Google Scholar
  24. 24.
    H. Yang, C. Shan, F. Li, Q. Zhang, D. Han, and L. Niu, “Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction,” J. Mater. Chem., 19, No. 46, 8856-8860 (2009).Google Scholar
  25. 25.
    T. Villmow, B. Kretzschmar, and P. Pötschke, “Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites,” Compos. Sci. Technol., 70, No. 14, 2045–2055 (2010).Google Scholar
  26. 26.
    L. Cao, X. Liu, H. Na, Y. Wu, W. Zheng, and J. Zhu, “How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites,” Journal of Materials Chemistry A, 1, No. 16, 5081-5088 (2013).Google Scholar
  27. 27.
    L. C. Tang, Y. J. Wan, D. Yan, Y. B. Pei, L. Zhao, Y. B. Li, et al., “Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process,” Composites Science and Technology, 82, 60-68 (2013).Google Scholar
  28. 28.
    Z. A. Ghaleb, M. Mariatti, and Z. M. Ariff, “Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: The effect of sonication time and filler loading,” Composites Part A: Applied Science and Manufacturing, 58, 77–83 (2014).Google Scholar
  29. 29.
    J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, “Mechanical properties of graphene nanoplatelet/epoxy composites,” Journal of Composite Materials, 49, No. 6, 659–668 (2015).Google Scholar
  30. 30.
    X. Wang, L. Song, W. Pornwannchai, Y. Hu, and B. Kandola, “The effect of graphene presence in flame retarded epoxy resin matrix on the mechanical and flammability properties of glass fiber-reinforced composites,” Composites Part A: Applied Science and Manufacturing, 53, 88–96 (2013).Google Scholar
  31. 31.
    W. P. Serena Saw and M. Mariatti, “Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications,” Journal of Materials Science: Materials in Electronics, 23, No. 4, 817–824 (2012).Google Scholar
  32. 32.
    I. Zaman, H. C. Kuan, Q. Meng, A. Michelmore, N. Kawashima, T. Pitt, L. Zhang, S. Gouda, L. Luong, and J. Ma, “A facile approach to chemically modified graphene and its polymer nanocomposites,” Advanced Functional Materials, 22, No. 13, 2735–2743 (2012).Google Scholar
  33. 33.
    D. Galpaya, M. Wang, G. George, N. Motta, E. Waclawik, and C. Yan, “Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties,” Journal of Applied Physics, 116, No. 5, 53518-53528 (2014).Google Scholar
  34. 34.
    W. Li, A. Dichiara, and J. Bai, “Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites,” Composites Science and Technology, 74, 221–227 (2013).Google Scholar
  35. 35.
    T. K. Bindu Sharmila, A. B. Nair, T. A. Beena, P. M. S. Beegum, and E. T. Thachil, “Microwave exfoliated reduced graphene oxide epoxy nanocomposites for high performance applications,” Polymer, 55, 3614-3627 (2014).Google Scholar
  36. 36.
    C. Valles, A. M. Abdelkader, R. J. Young, and I. A. Kinloch, “The effect of flake diameter on the reinforcement of few-layer graphene–PMMA composites,” Composites Science and Technology, 111, 17-22 (2015).Google Scholar
  37. 37.
    B. Mayoral, E. Harkin-Jones, P. Khanam, A. Noorunnisa, M. A. Ouederni, A. R. Hamilton, and D. Sun, “Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites, ” RSC Advances, 5, 52395-52409 (2015).Google Scholar
  38. 38.
    J. Zhong, A. I. Isayev, and X. Zhang, “Ultrasonic twin screw compounding of polypropylene with carbon nanotubes, graphene nanoplates and carbon black,” European Polymer Journal, 80, 16-39 (2016).Google Scholar
  39. 39.
    C. Gonçalves, A. Pinto, A. V. Machado, J. Moreira, I. C. Gonçalves, and F. Magalhães, “Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets,” Polym. Compos., 39, 308-320 (2018).Google Scholar
  40. 40.
    G. Zhenghong, R. Shiya, and F. Zhengping, “Promoting dispersion of graphene nanoplatelets in polyethylene and chlorinated polyethylene by Friedel–Crafts reaction,” Composites Science and Technology, 86, 157-163 (2013).Google Scholar
  41. 41.
    M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z-Z. Yu, and N. Koratkar, “Enhanced mechanical properties of nanocomposites at low graphene content,” ACS Nano., 3, 3884-90 (2009).Google Scholar
  42. 42.
    L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, “Toughening in graphene ceramic composites,” Acs Nano, 5, 3182-3190 (2011).Google Scholar
  43. 43.
    M. Martin-Gallego, M. M. Bernal, M. Hernandez, R. Verdejo, and M. A. Lopez-Manchado, “Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites,” Eur Polym J, 49, 1347-53 (2013).Google Scholar
  44. 44.
    L. Ma, G. Wang, and J. Dai, “Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process,” The Journal of High-Performance Polymers, 29, 187-196 (2017).Google Scholar
  45. 45.
    A. Algarni, “Enhancing the Mechanical Properties of Aerospace Fiber Reinforced Polymer Composite Materials using Nanoparticles,” PhD Thesis, King Abdulaziz University, KSA (2018).Google Scholar
  46. 46.
    ASTM D638 - 14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, 2002, www.astm.org (refernce date 14.04.2018).
  47. 47.
    Y. Jiang, H. Song, and R. Xu, “Research on the dispersion of carbon nanotubes by ultrasonic oscillation, surfactant and centrifugation respectively and fiscal policies for its industrial development,” Ultrason Sonochem, 48, 30–38 (2018).Google Scholar
  48. 48.
    K. Almuhammadi, M. Alfano, Y. Yang, and G. Lubineau, “Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes,” Mater. Des., 53, 921–927 (2014).Google Scholar
  49. 49.
    I. Alig, P. Pötschke, D. Lellinger, T. Skipa, S. Pegel, G. R. Kasaliwal, and T. Villmow, “Establishment, morphology and properties of carbon nanotube networks in polymer melts,” Polymer (Guildf), 53, 4–28 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Bourchak
    • 1
    Email author
  • M. N. Nahas
    • 2
  • B. Kada
    • 1
  • A. N. Khan
    • 1
  • A. Al-Garni
    • 1
  • K. A. Juhany
    • 1
  1. 1.Aeronautical Engineering Department, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Mechanical Engineering Department, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations