Estimates for the Thermoelastic Properties of a Composite with Ellipsoidal Anisotropic Inclusions

  • V. S. Zarubin
  • I. Yu. SavelyevaEmail author
  • E. S. Sergeeva

A mathematical model describing the thermoelastic characteristics of a composite reinforced by anisotropic ellipsoidal inclusions is proposed. The model is applied to estimating the thermoelastic properties in the case of strengthening the material with single-walled carbon nanotubes. The estimates obtained by the self-consistent method and dual variational formulation of a thermoelasticity problem for an inhomogeneous solid body are compared.


mathematical model thermoelastic characteristics anisotropic inclusions graphene single-walled carbon nanotubes 



This work was performed within the framework of state task of the Ministry of Education and Science of Russian Federation (Projects 9.7784.2017/BCh and 9.2422.2017/PCh) and Grant 1069.2018.8 of program of the President of the Russian Federation for the State support of young candidates of science.


  1. 1.
    P. Palermo, “Structural ceramic nanocomposites: a review of properties and powders synthesis methods,” Nanomaterials, 5, No. 2, 656-696 (2015).CrossRefGoogle Scholar
  2. 2.
    J. Eshelby, The Continuum Theory of Lattice Defects, Academic Press, N.Y. (1956).CrossRefGoogle Scholar
  3. 3.
    T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).Google Scholar
  4. 4.
    R. M. Christensen, Mechanics of Composite Materials, John Willey & Sons, N. Y. (1974).Google Scholar
  5. 5.
    B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. MGU, Moscow (1984).Google Scholar
  6. 6.
    V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of mechanics and Elecrodynamics of Continuous Media [in Russian], Izd. MGTU, Moscow (2008).Google Scholar
  7. 7.
    V. S. Zarubin and V. S. Sergeeva, “Investigation of the connection of the elastic characteristics of a single-layer carbon nanotube and graphene,” Vest. MGTU, Ser. Estestv.Nauki, No. 1, 100-110 (2016).Google Scholar
  8. 8.
    V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savel’eva, “Evaluation of the linear thermal expansion coefficient of a composite with disperse anisotropic inclusions by the self-consistency method,” Mech. Compos. Mater., 52, No. 2, 143-154 (2016).CrossRefGoogle Scholar
  9. 9.
    V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savel’eva, “Estimates of the elastic characteristics of a composite with short anisotropic fibers,” Mech. Compos. Mater., 53, No. 4, 497-504 (2017).CrossRefGoogle Scholar
  10. 10.
    I. Yu. Tsvelodub, “On the inverse Eshelby tensor,” Vest. CHGPU, Ser. Mekh. Predel’n. Sost., No. 2, 530-535 (2010).Google Scholar
  11. 11.
    M. Onami, et. al., Introduction to Micromechanics, Metallurgiya [in Russian], Moscow (1987).Google Scholar
  12. 12.
    Handbook of Composites, Vol. 1. /Ed. J. Lubin, Van Nostrand Reinhold (1982).Google Scholar
  13. 13.
    Physical Quantities: Handbook /Eds. I. S. Grigoriev and E. Z. Melikhova, Energoatomizdat, Moscow (1991).Google Scholar
  14. 14.
    I. E. Berinskii and A. M. Krivtsov, “On the use of multiparticle interatomic potentials for calculating the elastic characteristics of graphene and diamond,” Izv. RAN, Mech. Tverd. Tela, No. 6, 60-85 (2010).Google Scholar
  15. 15.
    H. Jiang, B. Liu, Y. Huang, and K. C. Hwang, “Thermal expansion of single-wall carbon nanotubes,” J. of Eng. Mater. and Technology, 126, 265-270 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. S. Zarubin
    • 1
  • I. Yu. Savelyeva
    • 1
    Email author
  • E. S. Sergeeva
    • 1
  1. 1.N. E. Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations