Advertisement

Mechanics of Composite Materials

, Volume 55, Issue 3, pp 337–348 | Cite as

Studying the Viscoelastic Properties of an Epoxy Resin Strengthened with Silicon Dioxide Nanoparticles by Instrumented Microindentation

  • S. V. Smirnov
  • I. A. VeretennikovaEmail author
  • V. M. Fomin
  • A. A. Filippov
  • T. A. Brusentseva
Article
  • 15 Downloads

The viscoelastic properties of surface layers of a Primer-204 epoxy resin modified by silicon dioxide nanoparticles with weight fractions of 0.24, 0.41, 0.65, and 2% were investigated. Material specimens were indented using a Hysitron TI 950 Triboindenter nanomechanical test system. The load and the loading and holding times had a significant effect on the values of hardness and reduced the elastic modulus obtained by indentation. The material exhibited viscosity at the microscopic level. With filler content growing from 0.24 to 2 wt.%, the reduced elastic modulus and hardness of surface layers of the material increased, but the creep decreased. It is shown that the rheonomic properties of the Primer-204 epoxy resin modified by silicon dioxide nanoparticles should be taken into account.

Keywords

epoxy resin silicon dioxide creep microindentation 

References

  1. 1.
    E. Manias, “Nanocomposites: stiffer by design,” Nat. Mater., 6, 9-11 (2007).CrossRefGoogle Scholar
  2. 2.
    G. Kickelbick, “Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale,” Prog. Polym. Sci., 28, 83-114 (2003).CrossRefGoogle Scholar
  3. 3.
    D. Pinto, L. Bernardo, A. Amaro, and S. Lopes, “Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement. A review,” Constr. Build. Mater., 95, 506-524 (2015).CrossRefGoogle Scholar
  4. 4.
    A. Allahverdi, M. Ehsani, H. Janpour, and S. Ahmadi, “The effect of nanosilica on mechanical, thermal and morphological properties of epoxy coating,” Prog. Org. Coat., 75, 543-548 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Conradi, M. Zorko, A. Kocijan, and I. Verpoest, “Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers,”, Mater. Chem. Phys., 137, 910-915 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Jumahata, C. Soutisb, S. A. Abdullaha, and Salmiah Kasolanga, “Tensile properties of nanosilica/epoxy nanocomposites,” IRIS 2012, Proc. Eng., 41, 1634-1640 (2012).Google Scholar
  7. 7.
    O. Starkova, S. T. Buschhorn, E. Mannov, K. Schulte, and A. Aniskevich, “Creep and recovery of epoxy/MWCNT nanocomposites,” Composites: Part A, 43, 1212-1218 (2012).CrossRefGoogle Scholar
  8. 8.
    Yu Jia, Ke Peng, Xing-long Gong, and Zhong Zhang, “Creep and recovery of polypropylene/carbon nanotube composites,” Int. J. Plast., No.27, 1239-1251 (2011).Google Scholar
  9. 9.
    S. H. Aboubakr, U. F. Kandil, and M. Reda Taha, “Creep of epoxy–clay nanocomposite adhesive at the FRP interface: A multi-scale investigation,” Int. J. Adhes. Adhes., 54, 1-12 (2014).CrossRefGoogle Scholar
  10. 10.
    V. E. Panin (ed.), Surface Layers and Internal Interfaces in Heterogeneous Materials, ISPMS SB RAS [in Russian], SB RAS, Novosibirsk (2006).Google Scholar
  11. 11.
    T. A. Brusentseva, A. A. Filippov, V. M. Fomin, S. V. Smirnov, and I. A. Veretennikova, “Modification of epoxy resin with silica nanoparticles and process engineering of composites based on them,” Mech. Compos. Mater., 51, No.4, 531-538 (2015).CrossRefGoogle Scholar
  12. 12.
    T. A. Borisova, A. A. Filippov, and V. М. Fomin, “Investigation of the elastic characteristics of a material with the presence of a nanodispersed powder in the structure,” Izv. Altai State Univ., 73, No. 1, 20-21 (2012).Google Scholar
  13. 13.
    S. V. Smirnov, I. A. Veretennikova, E. O. Smirnova, V. М. Fomin, A. А. Filippov, and Т. А. Brusentseva, “Studying epoxy resin reinforced with silica dioxide nanoparticles by microindentation,” Diagn. Resour. Mech. Mater. Struct., No. 1, 24-35 (2017).Google Scholar
  14. 14.
    S. V. Smirnov, I. A. Veretennikova, T. A. Brusentseva, A. A. Filippov, and V. M. Fomin, “Studying a heterogeneous material based on epoxy oligomer filled with silica by microindentation,”, AIP Conf. Proc., 1785, 040069-1 – 040069-5 (2016)Google Scholar
  15. 15.
    S. P. Bardakhanov, A. I. Korchagin, N. K. Kuksanov, A.V. Lavrukhin, R. A. Salimov, S. N. Fadeev, and V. V. Cherepkov, “Obtaining nanopowders by evaporation of initial substances on an electron accelerator at atmospheric pressure,” Report. RAS, 409, No.3, 320-323 (2006).Google Scholar
  16. 16.
    ISO 14577-1:2002 Metallic materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method.Google Scholar
  17. 17.
    A. M. Díez-Pascual, M. A. Gómez-Fatou, F. Ania, and A. Flores, “Nanoindentation in polymer nanocomposites,” Prog. Mater. Sci., 67, 1-94 (2015).CrossRefGoogle Scholar
  18. 18.
    G. L. Oliveira, C. A. Costa, S. C. S. Teixeira, and M. F. Costa, “The use of nano- and micro-instrumented indentation tests to evaluate viscoelastic behavior of poly (vinylidene fluoride) (PVDF),” Polym. Test., 34, 10-16 (2014).CrossRefGoogle Scholar
  19. 19.
    R. Seltzer, Y.-W. Mai, and P. M. Frontini, “Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending,” Composites: Part B, 43, 83-89 (2012).CrossRefGoogle Scholar
  20. 20.
    L. A. Fasce, R. Seltzer, and P. M. Frontini, “Depth sensing indentation of organic–inorganic hybrid coatings deposited onto a polymeric substrate,” Surf. Coat. Technol., 210, 62-70 (2012).CrossRefGoogle Scholar
  21. 21.
    A. H. W. Ngan, H. T. Wang, B. Tang, and K. Y. Sze, “Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation,” Int. J. Solids Struct., 42, 1831-1846 (2005).CrossRefGoogle Scholar
  22. 22.
    S.-F. Chuang, S.-Y. Lin, P.-J. Wei, C.-F. Han, J.-F. Lin, and H.-C. Chang, “Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test,” J. Biomec., 48, Iss.10, 2155-2161 (2015).CrossRefGoogle Scholar
  23. 23.
    W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using loaddisplacement sensing indentation experiments,” Matter. Res., 7, Iss.6, 1564-1583 (1992).CrossRefGoogle Scholar
  24. 24.
    Y. U. I. Golovin, Nanoindentation and its Capabilities [in Russian], M., Mashinostroenie, (2009).Google Scholar
  25. 25.
    M. L. Trunov, V. S. Bilanich, and S. N. Dub, “Nanoindentation study of the time-dependent mechanical behavior of materials,” Tech. Phys., 52, 1298-1305 (2007).CrossRefGoogle Scholar
  26. 26.
    G. Feng and A.H.W. Ngan, “Effects of creep and thermal drift on modulus measurement using depth-sensing indentation,” J. Mater. Res., 17, Iss. 3, 660-668 (2002).CrossRefGoogle Scholar
  27. 27.
    A. H. W. Ngan and B. Tang, “Viscoelastic efIfects during unloading in depth-sensing indentation,” J. Mater. Res., 17, Iss. 10, 2604-2610 (2002).CrossRefGoogle Scholar
  28. 28.
    M. L. Oyen and R. F. Cook, “Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials,” J. Mater. Res., 18, No. 1, 139-150 (2003).CrossRefGoogle Scholar
  29. 29.
    M. L. Oyen and R. F. Cook, “A practical guide for analysis of nanoindentation data,” J. Mech. Behav. Biomed., 2, Iss. 4, 396-407 (2009).CrossRefGoogle Scholar
  30. 30.
    A. C. Fischer–Cripps, “A simple phenomenological approach to nanoindentation creep,” Mater. Sci. Eng. A., 385, Iss. 1-2, 74-82 (2004).CrossRefGoogle Scholar
  31. 31.
    V. D. Natsik, L. S. Fomenko, and S. V. Lubenets, “Investigation of the creep and glass transition of elastomers by the microindentation method: Epoxy resin and related nanocomposites,” Phys. Solid State, 55, No.5, 1020-1033 (2013).CrossRefGoogle Scholar
  32. 32.
    T. Fudzii and M. Dzako, Fracture Mechanics of Composite Materials [in Russian], M., Mir (1982).Google Scholar
  33. 33.
    V. I. Kolesnikov, V. V. Bardushkin, A. V. Lapickij, A. P. Sychyov, and V. B. Yakovlev, “Effective elastic characteristics of epoxy-based antifriction composites,” Vest. YUNC RAN, 6, No.1, 5-10 (2010).Google Scholar
  34. 34.
    M. Arefi, E. M.-R. Bidgoli, R. Dimitri, and F. Tornabene, “Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets,” Aerosp. Sci. Technol., 81, 108-117 (2018)CrossRefGoogle Scholar
  35. 35.
    S. A. Kukushkin and A.V. Osipov, “Anisotropy of solid silicon carbide epitaxy on silicon,” Semiconductors, 47, Iss. 12, 1575-1579 (2013).CrossRefGoogle Scholar
  36. 36.
    R. M. Christensen, Theory of Viscoelasticity [in Russian], M., Mir (1974).Google Scholar
  37. 37.
    J. Mays, Theory and problems of continuum mechanics [in Russian], Mir, Moscow (1974).Google Scholar
  38. 38.
    A. Novik and B. Berri, Relaxation Phenomena in Crystals [in Russian], M., Atomizdat (1975).Google Scholar
  39. 39.
    T. Alfrei and E. F. Garni, Dynamics of Viscoelastic Behavior. Rheology [in Russian], M., I. L., (1962).Google Scholar
  40. 40.
    J. R. M. Radok, “Viscoelastic stress analysis,” Q. Appl. Math., 15, 198-202 (1957).CrossRefGoogle Scholar
  41. 41.
    E. H. Lee and J. R. M. Radok, “The contact problem for viscoelastic bodies,” J. Appl. Mech., 27, 438-444 (1960).CrossRefGoogle Scholar
  42. 42.
    J. Qin, Y. Huang, K. C. Hwang, J. Song, and G. M. Pharr, “The effect of indenter angle on the microindentation hardness,” Acta Mater., 55, 6127-6132 (2007).CrossRefGoogle Scholar
  43. 43.
    J. M. MacKelvey, Polymer Processing, New York, Wiley (1962).Google Scholar
  44. 44.
    A. V. Attetkov, S. V. Galkin, and B. C. Zarubin, Optimization Approach: Textbook for University [in Russian], M., Izd-vo MGTU im. N. EH. Baumana (2003).Google Scholar
  45. 45.
    F. Gill, U. Myurrej, and M. Rajt, Practical Ooptimization [in Russian], M., Mir (1985).Google Scholar
  46. 46.
    V. P. Gordienko, R.V. Podlesny, and T. G. Sichkar, “Influence of climatic aging on the properties of a filled polyepoxide,” Plastic. masses, No. 6, 14-17 (2008).Google Scholar
  47. 47.
    V. P. Selyaev, D. R. Nizin, and D. A. Artamonov, “Climatic stability of polymer composite materials based on epoxy binders,” Reg. Architect. and Constr., No.1, 34-42 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. V. Smirnov
    • 1
  • I. A. Veretennikova
    • 1
    Email author
  • V. M. Fomin
    • 2
  • A. A. Filippov
    • 2
  • T. A. Brusentseva
    • 2
  1. 1.Institute of Engineering Science, Ural Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.S. A. Khristianovich Institute of Theoretical and Applied Mechanics of Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations