Advertisement

Numerical Modeling of the Casting Process and Impact Loading of a Steel-Fiber-Reinforced High-Performance Self-Compacting Concrete

  • J. SliserisEmail author
  • A. Korjakins
Article
  • 10 Downloads

With the rapid development of high-performance self-compacting fiber-reinforced concrete materials, advanced numerical modeling tools have become necessary to design optimum materials and structures. A simulation framework that includes numerical modeling of the flow of a high-performance self-compacting fiber-reinforced concrete mortar during the casting process, calculation of local fiber orientation based on the deformation gradient in the mortar, and impact modeling taking into account the local fiber orientation is proposed. A new method to calculate the probability of fiber orientation distribution by particle tracking and approximation of particle motion using the deformation gradient is proposed. A discrete lattice modeling technique, with a nonlinear strain-rate- and local-fiber-orientation-dependent constitutive law for a numerical impact modeling is proposed. Single- and three-point concrete casting techniques are numerically simulated, and results are compared with experimental measurements, showing a good agreement. The numerical models revealed that fiber orientation and the impact resistance of beams strongly depended on the casting technology of the self-compacting concrete. The numerical model proposed can be used to design efficient concrete casting technologies ensuring the necessary fiber orientation in load-bearing structures..

Keywords

fiber-reinforced concrete local fiber orientation two-phase flow impact modeling 

Notes

Acknowledgements

The financial support of European Regional Development Fund project Nr.1.1.1.1/16/A/007 “A New Concept for Sustainable and Nearly Zero-Energy Buildings” is gratefully acknowledged.

References

  1. 1.
    A. Abrishambaf, V. M. C. F. Cunha, and J. A. O. Barros, “A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels,” Eng. Fract. Mech., 162, 1-20 (2016). doi: https://doi.org/10.1016/j.engfracmech.2016.04.043.CrossRefGoogle Scholar
  2. 2.
    E. V. Sarmiento, M. A. N. Hendriks, M. R. Geiker, and T. Kanstad, “Modeling the influence of the fibre structure on the structural behaviour of flowable fibre-reinforced concrete,” Eng. Struct., 124, 186-195 (2016). doi:https://doi.org/10.1016/j. engstruct.2016.05.053Google Scholar
  3. 3.
    V. M. C. F. Cunha, J. A. O. Barros, and J. M. Sena-Cruz, “An integrated approach for modeling the tensile behaviour of steel fibre reinforced self-compacting concrete,” Cem. Concr. Res., 41, 64-76 (2011). doi: https://doi.org/10.1016/j.cemconres. 2010.09.00Google Scholar
  4. 4.
    M. Roy, C. Hollmann, and K. Wille, “Influence of volume fraction and orientation of fibers on the pullout behavior of reinforcement bar embedded in ultra high performance concrete,” Constr. Build. Mater., 146, 582-593 (2017). doi: https://doi.org/10.1016/j.conbuildmat.2017.04.08 CrossRefGoogle Scholar
  5. 5.
    J. Sliseris, H. Andrä M. Kabel, B. Dix, B. Plinke, O. Wirjadi, et al., “Numerical prediction of the stiffness and strength of medium density fiberboards,” Mech. Mater., 79, 73-84 (2014). doi: https://doi.org/10.1016/j.mechmat.2014.08.005.CrossRefGoogle Scholar
  6. 6.
    J. Sliseris, H. Andrä, M. Kabel, B. Dix, and B. Plinke, “Virtual characterization of MDF fiber network,” Eur. J. Wood Wood Prod., 75, 397-407 (2017). doi: https://doi.org/10.1007/s00107-016-1075-5.CrossRefGoogle Scholar
  7. 7.
    B. Zhou and Y. Uchida, “Influence of flowability, casting time and formwork geometry on fiber orientation and mechanical properties of UHPFRC,” Cem. Concr. Res., 95, 164-177 (2017). doi: https://doi.org/10.1016/j.cemconres.2017.02.017.CrossRefGoogle Scholar
  8. 8.
    R. Deeb, B. L. Karihaloo, and S. Kulasegaram, “Reorientation of short steel fibres during the flow of self-compacting concrete mix and determination of the fibre orientation factor,” Cem. Concr. Res., 56, 112-120 (2014). doi:https://doi.org/10.1016/j. cemconres.2013.10.002.Google Scholar
  9. 9.
    F. Kolařík, B. Patzák, and L. N. Thrane, “Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete,” Comput. Struct., 154, 91-100 (2015). doi: https://doi.org/10.1016/j.compstruc.2015.03.007 CrossRefGoogle Scholar
  10. 10.
    W. Ren, Z. Yang, R. Sharma, C. Zhang, and P. J. Withers, “Two-dimensional X-ray CT image based meso-scale fracture modeling of concrete,” Eng. Fract. Mech., 133, 24-39 (2015). doi: https://doi.org/10.1016/j.engfracmech.2014.10.016 CrossRefGoogle Scholar
  11. 11.
    A. Qsymah, R. Sharma, Z. Yang, L. Margetts, and P. Mummery, “Micro X-ray computed tomography image- based two-scale homogenisation of ultra high performance,” Fibre Reinf. Concrete, 130, 230-240 (2016).Google Scholar
  12. 12.
    Y. Su, C. Wu, J. Li, Z.-X. Li,and W. Li, “Development of novel ultra-high performance concrete: From material to structure,” Constr. Build. Mater., 135, 517-528 (2017). doi: https://doi.org/10.1016/j.conbuildmat.2016.12.175.CrossRefGoogle Scholar
  13. 13.
    M. Singh, A. H. Sheikh, M. S. Mohamed Ali, P. Visintin, and M. C. Griffith, “Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams,” Constr. Build. Mater., 138, 12-25 (2017). doi: https://doi.org/10.1016/j.conbuildmat.2017.02.002.CrossRefGoogle Scholar
  14. 14.
    M. Bruggi, “Generating strut-and-tie patterns for reinforced concrete structures using topology optimization,” Comput. Struc., 87, 1483-1495 (2009). doi: https://doi.org/10.1016/j.compstruc.2009.06.003 CrossRefGoogle Scholar
  15. 15.
    B. Sun, X. Wang, and Z. Li,. “Meso-scale image-based modeling of reinforced concrete and adaptive multi-scale analyses on damage evolution in concrete structures,” Comput. Mater. Sci., 110, 39-53 (2015). doi: https://doi.org/10.1016/j.commatsci. 2015.07.050.Google Scholar
  16. 16.
    G. F. Zhao, “Developing a four-dimensional lattice spring model for mechanical responses of solids,” Comput. Methods Appl. Mech. Eng., 315, 881-895 (2017). doi: https://doi.org/10.1016/j.cma.2016.11.034 CrossRefGoogle Scholar
  17. 17.
    J. Šliseris, L. Gaile, and L. Pakrastiņš, “Deformation process numerical analysis of T-stub flanges with pre-loaded bolts,” Procedia Eng., 172, (2017). doi: https://doi.org/10.1016/j.proeng.2017.02.173.
  18. 18.
    J. Sliseris, “Numerical analysis of reinforced concrete structures with oriented steel fibers and re-bars,” Eng. Fract. Mech., 194, 337-349 (2018). doi: https://doi.org/10.1016/j.engfracmech.2018.03.017.CrossRefGoogle Scholar
  19. 19.
    N. H. T. Nguyen, H. H. Bui, G. D. Nguyen, J. Kodikara, S. Arooran, and P. Jitsangiam, “A thermodynamics-based cohesive model for discrete element modeling of fracture in cemented materials,” Int. J. Solids Struct., 117, 159-176 (2017). doi: https://doi.org/10.1016/j.ijsolstr.2017.03.027 CrossRefGoogle Scholar
  20. 20.
    C. Jiang, G. F. Zhao, and N. Khalili, “On crack propagation in brittle material using the distinct lattice spring model,” Int. J. Solids Struct., 118-119, 1339-1351 (2017). doi: https://doi.org/10.1016/j.ijsolstr.2017.04.024 CrossRefGoogle Scholar
  21. 21.
    A. Yaghoobi and M. G. Chorzepa, “Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework,” Eng. Fract. Mech., 169, 1-13 (2016). doi: https://doi.org/10.1016/j.engfracmech.2016.11.004 Google Scholar
  22. 22.
    J. Smith, G. Cusatis, D. Pelessone, E. Landis, J. O’Daniel, and J. Baylot, “Discrete modeling of ultra-high-performance concrete with application to projectile penetration,” Int. J. Impact Eng., 65, 13-32 (2014). doi: https://doi.org/10.1016/j.ijimpeng.2013.10.008 CrossRefGoogle Scholar
  23. 23.
    N. Banichcuk, “Optimization problems for elastic anisotropic bodies,” Arch. Mech., 3, 347-363 (1981).Google Scholar
  24. 24.
    P. Pedersen, “On optimal orientation of orthotropic materials,” Struct. Optim., 1, 101-106 (1989).CrossRefGoogle Scholar
  25. 25.
    J. Lellep and J. Majak, “Nonlinear constitutive behavior of orthotropic materials,” Mech. Compos. Mater., 36, No. 4, 261-264 (2000).CrossRefGoogle Scholar
  26. 26.
    J. Lellep and J. Majak, “On optimal orientation of nonlinear elastic orthotropic materials,” Struct. Optim., 14, 116-120 (1997).CrossRefGoogle Scholar
  27. 27.
    M. Rovati and A. Taliercio, “Stationarity of the strain energy density for some classes of anisotropic solids,” 40, 6043-6075 (2003). doi: https://doi.org/10.1016/S0020-7683(03)00371-8
  28. 28.
    J. Majak and M. Pohlak, “Optimal material orientation of linear and non-linear elastic 3D anisotropic materials,” Meccanica, 45, 671-680 (2010).CrossRefGoogle Scholar
  29. 29.
    J. Majak and M. Pohlak, “Decomposition method for solving optimal material orientation problems,” Compos. Struct., 92, 1839-1845 (2010). doi: https://doi.org/10.1016/j.compstruct.2010.01.015.CrossRefGoogle Scholar
  30. 30.
    D. Jeong and J. Kim, “Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows,” Comput. Fluids, 156, 239-246 (2017). doi: https://doi.org/10.1016/j.compfluid.2017.07.009 CrossRefGoogle Scholar
  31. 31.
    Z. Z. Hu, D. Greaves, and A. Raby, “Numerical wave tank study of extreme waves and wave-structure interaction using OpenFoam®,” “Ocean Eng., 126, 329-342 (2016). doi: https://doi.org/10.1016/j.oceaneng.2016.09.017 CrossRefGoogle Scholar
  32. 32.
    L. F. Chen, J. Zang, A. J. Hillis, G. C. J. Morgan, and A. R Plummer, “Numerical investigation of wave–structure interaction using OpenFOAM,” Ocean Eng., 88, 91-109 (2014). doi: https://doi.org/10.1016/j.oceaneng.2014.06.003 CrossRefGoogle Scholar
  33. 33.
    J. Šliseris, L. Gaile, and L. Pakrastiņš, “Numerical analysis of behaviour of cross laminated timber (CLT) in blast loading,” IOP Conf. Ser. Mater. Sci. Eng., vol. 251 (2017). doi: https://doi.org/10.1088/1757-899X/251/1/012105
  34. 34.
    J. Sliseris, L. Yan, and B. Kasal, “Numerical modeling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites,” Composites: Part B., 89, 143-154 (2016). doi: https://doi.org/10.1016/j.compositesb.2015.11.038 CrossRefGoogle Scholar
  35. 35.
    A. K. Someh and N. Saeki, “Prediction for the stress-strain curve of steel fiber reinforced concrete,” Trans. Japan Concr. Inst., 18, 175-182 (1996).Google Scholar
  36. 36.
    D. Y. Yoo, N, Banthia, S. T. Kang, and Y. S. Yoon, “Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete,” Compos. Struct., 157, 62-70 (2016). doi: https://doi.org/10.1016/j.compstruct. 2016.08.02Google Scholar
  37. 37.
    D. Y. Yoo, N. Banthia, S. W. Kim, and Y. S. Yoon, “Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading,” Compos. Struct., 126, 233–245 (2015). doi: https://doi.org/10.1016/j.compstruct.2015.02.058 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringRiga Technical UniversityRigaLatvia

Personalised recommendations