Mechanics of Composite Materials

, Volume 54, Issue 4, pp 415–430 | Cite as

Mechanical Models and Finite-Element Approaches for the Structural Analysis of Photovoltaic Composite Structures: a Comparative Study

  • M. HaghiEmail author
  • M. Aßmus
  • K. Naumenko
  • H. Altenbach

In general, photovoltaic composite structures are three-layer laminates with a thin soft core layer. Due to the high contrast between the mechanical properties of skin and core layers, such structures have been studied by different theories. Finite-element models, continuum-based theories, and two-dimensional plate/shell theories are used in the analysis of laminated structures. The present study deals with the modeling and computational simulation of photovoltaic modules in the context of global structural mechanics. The focus is on the implementation of different elements in both two- and three-dimensional approaches to find the most efficient one for analyzing photovoltaic composite structures.


photovoltaic module composite structure structural mechanics finite-element analysis 



This research was supported financially by the European Structural and Investment Funds (ESF) under the program ‘Sachen-Anhalt WISSENSCHAFT Internationalisierung’ (project no. ZS/2016/08/80646) in context of the Inretnational Graduatr School at Otto von Guericke University (OVGU) MEMoRIAL and by the German Research Foundation (DFG) within the framework of the research training group 1554 ‘Micro-Macro-Interactions of Structured Media and Particle Systems’ (RTG 1554). This support is highly acknowledged.


  1. 1.
    S.-H. Schulze, M. Pander, K. Naumenko, and H. Altenbach, “Analysis of laminated glass beams for photovoltaic applications,” Int. J. Solids Structures, 49, No. 15-16, 2027-2036 (2012).CrossRefGoogle Scholar
  2. 2.
    A. V. Duser, A. Jagota, and S. J. Bennison, “Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure,” J. Eng. Mech., 125, No. 4, 435-442 (1999).CrossRefGoogle Scholar
  3. 3.
    L. Galuppi and G. Royer-Carfagni, “Enhanced effective thickness of multi-layered laminated glass,” Composites: Part B, 64, 202-213 (2014).CrossRefGoogle Scholar
  4. 4.
    M. M. e Costa, L. Valarinho, N. Silvestre, and J. R. Correia, “Modeling of the structural behavior of multilayer laminated glass beams: Flexural and torsional stiffness and lateral-torsional buckling,” Eng. Struct., 128, 265-282 (2016).CrossRefGoogle Scholar
  5. 5.
    L. Valarinho, J. R. Correia, M. M. e Costa, F. A. Branco, and N. Silvestre, “Lateral-torsional buckling behaviour of long-span laminated glass beams: Analytical, experimental and numerical study,” Mater. Des., 102, 264-275 (2016).CrossRefGoogle Scholar
  6. 6.
    G. Castori and E. Speranzini, “Structural analysis of failure behavior of laminated glass,” Composites: Part B., 125, 89-99 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Aßmus, K. Naumenko, and H. Altenbach, “A multiscale projection approach for the coupled globallocal structural analysis of photovoltaic modules,” Compos. Struct., 158, 340-358 (2016).CrossRefGoogle Scholar
  8. 8.
    E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” J. Appl. Mech., 12, 69-77 (1945).Google Scholar
  9. 9.
    R. D. Mindlin, “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” J. Appl. Mech., 18, 31-38 (1951).Google Scholar
  10. 10.
    M. Timmel, S. Kolling, P. Osterrieder, and P. D. Bois, “A finite element model for impact simulation with laminated glass,” Int. J. Impact Engineering, 34, No. 8, 1465-1478 (2007).CrossRefGoogle Scholar
  11. 11.
    P. D. Bois, S. Kolling, and W. Fassnacht, “Modelling of safety glass for crash simulation,” Computat. Mater. Sci., 28, No. 3-4, 675-683 (2003).CrossRefGoogle Scholar
  12. 12.
    M. Kim and A. Gupta, “Finite element analysis of free vibrations of laminated composite plates,” Int. J. Analytical and Experimental Modal Analysis, 5, No. 3, 195-203 (1990).Google Scholar
  13. 13.
    A. G. Niyogi, M. K. Laha, and P. K. Sinha, “Finite element vibration analysis of laminated composite folded plate structures,” Shock and Vibration, 6, No. 5-6, 273-283 (1999).CrossRefGoogle Scholar
  14. 14.
    M. K. Pandit, S. Haldar, and M. Mukhopadhyay, “Free vibration analysis of laminated composite rectangular plate using finite element method,” J. Reinforced Plastics and Compos., 26, No. 1, 69-80 (2007).CrossRefGoogle Scholar
  15. 15.
    R. Rikards, “Finite element analysis of vibration and damping of laminated composites,” Compos. Struct., 24, No. 3, 193-204 (1993).CrossRefGoogle Scholar
  16. 16.
    H. Altenbach, V. A. Eremeyev, and K. Naumenko, “On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer,” Zeitchrift für Angewandte Mathematik und Mechanik, 95, No. 10, 1004-1011 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Eisenträger, K. Naumenko, H. Altenbach, and H. Köppe, “Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels,” Int. J. Mech. Sci., 96-97, 163-171 (2015).CrossRefGoogle Scholar
  18. 18.
    K. Naumenko and V. A. Eremeyev, “A layer-wise theory for laminated glass and photovoltaic panels,” Compos. Struct., 112, 283-291 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Weps, K. Naumenko, and H. Altenbach, “Unsymmetric three-layer laminate with soft core for photovoltaic modules,” Compos. Struct., 105, 332-339 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Eisenträger, K. Naumenko, H. Altenbach, and J. Meenen, “A user-defined finite element for glass and photovoltaic panels based on a layer-wise theory,” Compos. Struct., 133, 265-277 (2015).CrossRefGoogle Scholar
  21. 21.
    L. P. Lebedev, M. J. Cloud, and V. A. Eremeyev, Tensor Analysis with Applications in Mechanics, World Scientific, (2010).Google Scholar
  22. 22.
    H. Altenbach, Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen, 3rd Edition, Springer, Berlin, Heidelberg (2015).CrossRefGoogle Scholar
  23. 23.
    A. Bertram, Elasticity and Plasticity of Large Deformations: An Introduction, 3rd Edition, Springer, Berlin, Heidelberg (2012).CrossRefGoogle Scholar
  24. 24.
    E. Carrera, “Theories and finite elements for multilayered, anisotropic, composite plates and shells,” Archives of Computational Methods in Engineering, 9, No. 2, 87-140 (2002).CrossRefGoogle Scholar
  25. 25.
    Simulia, ABAQUS® Analysis User’s Guide, ABAQUS® 6.14 Documentation, Volume IV: Elements, Dassault Systmes, (2014).Google Scholar
  26. 26.
    Simulia, ABAQUS® Theory Guide, ABAQUS® 6.14 Documentation, Dassault Systmes, (2014).Google Scholar
  27. 27.
    E. Ellobody, R. Feng, and B. Young, Finite Element Analysis and Design of Metal Structures, Butterworth-Heinemann, Boston (2014).Google Scholar
  28. 28.
    J. N. Reddy, “On refined computational models of composite laminates,” International Journal for Numerical Methods in Engineering, 27, No. 2, 361-382 (1989).CrossRefGoogle Scholar
  29. 29.
    J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Boca Raton, (2003).Google Scholar
  30. 30.
    Y. Zhang and C. Yang, “Recent developments in finite element analysis for laminated composite plates,” Compos. Struct., 88, No. 1, 147-157 (2009).CrossRefGoogle Scholar
  31. 31.
    M. Aßmus, J. Nordmann, K. Naumenko, and H. Altenbach, “A homogeneous substitute material for the core layer of photovoltaic composite structures,” Composites: Part B., 112, 353-372 (2017).CrossRefGoogle Scholar
  32. 32.
    M. Aßmus, S. Bergmann, K. Naumenko, and H. Altenbach, “Mechanical behaviour of photovoltaic composite structures: A parameter study on the influence of geometric dimensions and material properties under static loading,” Compos. Communic., 5, 23-26 (2017).CrossRefGoogle Scholar
  33. 33.
    M. Aßmus, S. Bergmann, J. Eisenträger, K. Naumenko, and H. Altenbach, in : H. Altenbach, R. Goldstein, and E. Murashkin (eds.), Mechanics for Material and Technologies. Advanced Structural Materials, Springer, Cham, 46, 73-122 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Haghi
    • 1
    Email author
  • M. Aßmus
    • 1
  • K. Naumenko
    • 1
  • H. Altenbach
    • 1
  1. 1.Chair of Engineering Mechanics, Institute of Mechanics, Faculty of Mechanical EngineeringOtto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations