Advertisement

Mechanics of Composite Materials

, Volume 54, Issue 3, pp 299–312 | Cite as

Thermoelastic Deformation of a Circular Sandwich Plate by Local Loads

  • E. I. Starovoitov
  • D. V. Leonenko
  • D. V. Tarlakovskii
Article
  • 4 Downloads

The boundary-value problem of axisymmetric deformation of an elastic circular sandwich plate asymmetric across its thickness under the action of local loads is formulated. The effect of a temerature field on the stressstrain state (SSS) of the plate is considered. To describe its kinematics, the hypotheses of broken normal are adopted, assuming Bernoulli hypotheses in the thin extern layers and the Tymoshenko hypothesis in the filler incompressible across its thickness. The work of filler in the tangential direction is taken into account. The equilibrium equations are derived using the variational method. An analytical solution of the boundary-value problem is obtained in the general case of loading of the plate by an axisymmetric surface load. The cases of local circular, annular, and linear loads are considered. A numerical analysis of SSS is performed for a plate hinged along its contour.

Keywords

elastic circular sandwich plate local loads temperature field analytical solution numerical analysis of SSS 

Notes

Acknowledgment

This work was performed at the Moscow Aviation Institute at the support of the Russian Scientific Fund (project No. 14-49-00091-P).

References

  1. 1.
    V. V. Bolotin and Yu. N. Novichov, Mechanics of Multilayer Structures [in Russian], M., Mashinostroenie, 1980.Google Scholar
  2. 2.
    K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, Dynamics of Nonuniform Shells at Nonstationary Loadings [in Russian], Kiev; Kiev Univ., 2012.Google Scholar
  3. 3.
    Yu. S. Solomonov and coauthors, Applied Problems of the Mechanics of Composite Cylindrical Shells [in Russian], M., Fizmatlit., 2014.Google Scholar
  4. 4.
    Yu. M. Pleskachevskii, E. I. Starovoitov, and A. V. Yarovaya, Deformation of Metal-Polymer Systems [in Russian], Minsk, Bel. Navuka, 2004.Google Scholar
  5. 5.
    E. I. Starovoitov, D. V. Leonenko, A. V. Yarovaya, “Vibrations of round three-layer plates under the action of distributed types local loads,” Strength of Materials,. 34, No. 5, 474-481 (2002).CrossRefGoogle Scholar
  6. 6.
    E. I. Starovoitov, D. V. Leonenko, and A. V. Yarovaya, Vibrations of round three-layer plates under the action of various types of surface loads,” Strength of Materials, 35, No. 4, 346-352 (2003).CrossRefGoogle Scholar
  7. 7.
    E. I. Starovoitov, V. D. Kubenko, and D. V. Tarlakovskii, “Vibrations of circular sandwich plates connected with an elastic foundation,” Russian Aeronautics, 52, No. 2, 151-157 (2009).CrossRefGoogle Scholar
  8. 8.
    E. I. Starovoitov and D. V. Leonenko, “Vibrations of circular composite plates on an elastic foundation under the action of local loads,” Mech. Compos. Mater., 52, No. 5, 665-672 (2016).CrossRefGoogle Scholar
  9. 9.
    E. I. Starovoitov and D. V. Leonenko, “Resonant effects of local on circular sandwich plates on en elastic foundation,” Int. Appl. Mech., 46, No. 1, 86-93 (2010).CrossRefGoogle Scholar
  10. 10.
    E. I. Starovoitov, D. V. Leonenko, and D. V. Tarlakovsky, “Resonance vibrations of circular composite plates on an elastic foundation,” Mech. Compos. Mater., 51, No. 5, 561-570 (2015).CrossRefGoogle Scholar
  11. 11.
    E. I. Starovoitov, D. V. Leonenko, and A. V. Yarovaya, “Vibration of a sandwich rod under local and impulsive forces,” Int. Appl. Mech., 41, No. 7, 809-816 (2005).CrossRefGoogle Scholar
  12. 12.
    N. Grover, B. N. Singh, and D. K. Maiti, “An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates,” Aerospace Sci. Technol., 52, 41-51 (2016).CrossRefGoogle Scholar
  13. 13.
    I. Ivañez, M. M. Moure, S. K. Garcia-Castillo, and S. Sanchez-Saez, “The oblique impact response of composite sandwich plates,” Compos. Struct., No. 133, 1127-1136 (2015).Google Scholar
  14. 14.
    L. Škec and G. Jelenić, “Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection,” Acta Mech., 225, No. 2, 523-541 (2014).CrossRefGoogle Scholar
  15. 15.
    E. I. Starovoitov, D. V. Leonenko, and A. V. Yarovaya, “Elastoplastic bending of a sandwich bar on an elastic foundation,” Int. Appl. Mech., 43, No. 4, 451-459 (2007).CrossRefGoogle Scholar
  16. 16.
    D. V. Leonenko and E. I. Starovoitov, “Deformation of a sandwichelastoplastic beam on an elastic foundation,” Mech. Solids, 46, No. 2, 291-298 (2011).CrossRefGoogle Scholar
  17. 17.
    V. V. Moskvitin and E. I Starovoitov, “Deformation and variable loading of two-layer metal-polymer plates,” Mech. Compos. Mater., 21, No. 3, 267-273 (1985).CrossRefGoogle Scholar
  18. 18.
    E. I. Starovoitov and D. V. Leonenko, “Impact of thermal and ionizing radiation on a circular sandwich plate on an elastic foundation,” Int. Appl. Mech., 47, No. 5, 580-589 (2011).CrossRefGoogle Scholar
  19. 19.
    D. V. Leonenko and E. I. Starovoitov, “Thermal impact on a circular sandwich plate on an elastic foundation,” // Mech. Solids, 47, No. 1, 111-118 (2012).Google Scholar
  20. 20.
    D. V. Leonenko and E. I. Starovoitov, “Thermoplastic strain of circular sandwich plates on an elastic base,” Mech. Solids, 44, No. 5, 744-755 (2009).CrossRefGoogle Scholar
  21. 21.
    E. I. Starovoitov, D. V. Leonenko, and D. V. Tarlakovskii, “Thermal-force deformation of a physically nonlinear sandwichstepped rod,” J. of Engineering Physics and Thermophysics, 89, No. 6, 1582-1590 (2016).CrossRefGoogle Scholar
  22. 22.
    E. I. Starovoitov and D. V. Leonenko, “Variable thermal-force bending of a sandwichbar with a compressible filler,” Mech. Compos. Mater., 53, No. 5, 645-658 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. I. Starovoitov
    • 1
  • D. V. Leonenko
    • 1
  • D. V. Tarlakovskii
    • 2
  1. 1.Belarusian State University of TransportGomelBelarus
  2. 2.Moscow Aviation Institute (Technical University)MoscowRussia

Personalised recommendations