Mechanics of Composite Materials

, Volume 53, Issue 3, pp 389–398 | Cite as

Evaluation of an Experimental Adhesive Resin for Orthodontic Bonding

  • B. H. Durgesh
  • A. A. Alkheraif
  • D. Pavithra
  • M. I. Hashem
  • F. Alkhudhairy
  • M. Elsharawy
  • D. D. Divakar
  • P. K. Vallittu
  • J. P. Matinlinna

The aim of this study was to evaluate in vitro the effect of an experimental adhesive resin for orthodontic bonding by measuring some the chemical and mechanical properties. The resin demonstrated increased values of nanohardness and elastic modulus, but the differences were not significant compared with those for the Transbond XT adhesives. The experimental adhesive resin could be a feasible choice or a substitute for the traditional bis-GMA-based resins used in bonding orthodontic attachments.


bis-GMA degree of conversion HPMA UDMA shear bond strength 



The project was financially supported by Vice Deanship of Research Chairs, King Saud University, Riyadh, Kingdom of Saudi Arabia. Also, we would like to express special thanks to Esstech Inc., Essington, PA, USA, for generously providing monomeric materials to our study.


  1. 1.
    A. E. Papakonstantinou, T. Eliades, F. Cellesi, D. C. Watts, and N Silikas, “Evaluation of UDMA’s potential as a substitute for Bis-GMA in orthodontic adhesives,” Dent. Mater., 29, 898-905 (2013).Google Scholar
  2. 2.
    N. Jagdish, S. Padmanabhan, A. B. Chitharanjan, J. Revathi, G. Palani, M. Sambasivam, et al., “Cytotoxicity and degree of conversion of orthodontic adhesives,” Angle. Orthod., 79, 1133-1138 (2009).CrossRefGoogle Scholar
  3. 3.
    C. Sunitha, V. Kailasam, S. Padmanabhan, and A. B. Chitharanjan, “Bisphenol A release from an orthodontic adhesive and its correlation with the degree of conversion on varying light-curing tip distances,” Am. J. Orthod Dentofacial Orthop., 140, No 2, 239-244 (2011).CrossRefGoogle Scholar
  4. 4.
    M. Zhang, J. P. Matinlinna, M. G. Botelho, and E. S. Sailynoja, “Comprehensive properties of a novel fiber reinforced composite with a UEDMA-based resin matrix,” Odonto., 102, 176-83 (2014).CrossRefGoogle Scholar
  5. 5.
    R. E. Kerby, L. A. Knobloch, S. Schricker, and B. Gregg, “Synthesis and evaluation of modified urethane dimethacrylate resins with reduced water sorption and solubility,” Dent. Mater., 25, 302-313 (2009).CrossRefGoogle Scholar
  6. 6.
    E. Asmussen and A. Peutzfeldt, “Mechanical properties of heat treated restorative resins for use in the inlay/onlay technique,” Scand. J. Dent. Res., 98, 564-7(1990).Google Scholar
  7. 7.
    T. Uysal, F. A. Basciftci, Y. Sener, M. S. Botsali, and A. Demir, “Conventional and high intensity halogen light effects on water sorption and microhardness of orthodontic adhesives,” Angle. Orthod., 78, 134-139 (2008).CrossRefGoogle Scholar
  8. 8.
    C. Kurachi, A. M. Tuboy, D. V. Magalhães, and V. S. Bagnato, “Hardness evaluation of a dental composite polymerized with experimental LED-based devices,” Dent. Mater., 17, 309-315 (1990).CrossRefGoogle Scholar
  9. 9.
    G. P. Cerveira, T. B. Berthold, A. A. Souto, A. M. Spohr, and E. M. Marchioro, “Degree of conversion and hardness of an orthodontic resin cured with a light-emitting diode and a quartz-tungsten-halogen light,” Eur. J. Orthod.,32, 83-86 (2010).CrossRefGoogle Scholar
  10. 10.
    M. Salerno, G. Derchi, S. Thorat, L. Ceseracciu, R. Ruffilli, and A. C. Barone, “Surface morphology and mechanical properties of new-generation flowable resin composites for dental restoration,” Dent. Mater., 27, 1221-1228 (2011).CrossRefGoogle Scholar
  11. 11.
    G. Yasuda, H. Inage, R. Kawamoto, Y. Shimamura, C. Takubo, Y. Tamura, et al., “Changes in elastic modulus of adhesive and adhesive-infiltrated dentin during storage in water,” J. Oral. Sci., 50, 481-486 (2008).CrossRefGoogle Scholar
  12. 12.
    N. Ilie and R. Hickel, “Investigations on mechanical behaviour of dental composites,” Clin. Oral. Invest., 13, 427-438 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Santini, V. Miletic, M. D. Swift, and M. Bradley, “Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units,” J. Dent., 40, 577-584 (2012).CrossRefGoogle Scholar
  14. 14.
    B. H. Durgesh, A. A. Alkheraif, J. Varrela, and P. K. Vallittu, “Photo initiated curing of bracket adhesive by light Ttansmission through glass fibers,” J. Biomater. Tissue Eng., 5, 411-416 (2015).CrossRefGoogle Scholar
  15. 15.
    M. Iijima, T. Muguruma, W. A. Brantley, T. Yuasa, J. Uechi, and I. Mizoguchi, “Effect of mechanical properties of fillers on the grindability of composite resin adhesives,” Am. J. Orthod. Dentofacial Orthop., 138, 420-426 (2010).CrossRefGoogle Scholar
  16. 16.
    M. Du and Y. Zheng, “Degree of conversion and mechanical properties studies of UDMA based materials for producing dental posts,” Polymer Composites., 29, 623-630 (2008).CrossRefGoogle Scholar
  17. 17.
    N. Kohda, M. Iijima, W. Brantley, T. Muguruma, T. Yuasa, S. Nakagaki, et al., “Effects of bonding materials on the mechanical properties of enamel around orthodontic brackets,” Angle. Orthod., 82, 187-195 (2012).CrossRefGoogle Scholar
  18. 18.
    B. H. Durgesh, A. A. Alkheraif, M. Al Sharawy, J. Varrela, and P. K. Vallittu, “Damage of the interface between an orthodontic bracket and enamel – the effect of some elastic properties of the adhesive material,” Mech. Compos. Mater., 51, No. 6, 805-812 (2016).CrossRefGoogle Scholar
  19. 19.
    J. Artun and S. Bergland, “Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment,” Am. J. Orthod., 85, 333-340 (1984).CrossRefGoogle Scholar
  20. 20.
    C. J. Floyd and S. H. Dickens, “Network structure of Bis-GMA- and UDMA-based resin systems,” Dent. Mater., 22, 1143-1149 (2006).CrossRefGoogle Scholar
  21. 21.
    O. Polydorou, A. Konig, E. Hellwig, and K. Kummerer, “Urethane dimethacrylate: a molecule that may cause confusion in dental research,” J. Biomed. Mater. Res. B Appl. Biomater., 91, 1-4 (2009).CrossRefGoogle Scholar
  22. 22.
    M. Zhang, “A novel UEDMA-HPMA-based E-glass fiber reinforced composite in vitro studies on comprehensive properties as a dental material,” The University of Hong Kong (Pokfulam, Hong Kong) (2015).Google Scholar
  23. 23.
    P. Schmage, I. Nergiz, W. Herrmann, and M. Ozcan, “Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces,” Am. J. Orthod. Dentofacial Orthop., 123, 540-546 (2003).CrossRefGoogle Scholar
  24. 24.
    Y. O. Zachrisson, B. U. Zachrisson, and T. Buyukyilmaz, “Surface preparation for orthodontic bonding to porcelain,” Am. J. Orthod. Dentofacial Orthop., 109, 420-430 (1996).CrossRefGoogle Scholar
  25. 25.
    B. M. Bourke and W. P. Rock, “Factors affecting the shear bond strength of orthodontic brackets to porcelain,” Br. J. Orthod., 26, 285-290 (1996).CrossRefGoogle Scholar
  26. 26.
    W. D. Cook, “Thermal aspects of the kinetics of dimethacrylate photopolymerization,” Polymer., 33, 2152-2161 (1992).CrossRefGoogle Scholar
  27. 27.
    I. Sideridou, V. Tserki, and G. Papanastasiou, “Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins,” Biomater., 23, 1819-1829 (2002).CrossRefGoogle Scholar
  28. 28.
    S. H. Dickens, J. W. Stansbury, K. M. Choi, and C. J. E. Floyd, “Photopolymerization kinetics of methacrylate dental resins,” Macromolecules., 36, 6043-6053 (2003).CrossRefGoogle Scholar
  29. 29.
    J. W. Thurmond, W. W. Barkmeier, and T. M. Wilwerding, “Effect of porcelain surface treatments on bond strengths of composite resin bonded to porcelain,” J. Prosthet. Dent., 72, 355-359 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • B. H. Durgesh
    • 1
  • A. A. Alkheraif
    • 1
  • D. Pavithra
    • 2
  • M. I. Hashem
    • 1
  • F. Alkhudhairy
    • 3
  • M. Elsharawy
    • 4
  • D. D. Divakar
    • 5
  • P. K. Vallittu
    • 6
  • J. P. Matinlinna
    • 7
  1. 1.Dental Biomaterial Research Chair, Dental Health Department, College of Applied Medical SciencesKing Saud UniversityRiyadKingdom of Saudi Arabia
  2. 2.Private Dental PracticeBangaloreIndia
  3. 3.Restorative Dental Science Department, College of DentistryKing Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Dental Biomaterials Research Chair, College of Applied Medical SciencesKing Saud UniversityRiyadhKingdom of Saudi Arabia
  5. 5.Researcher, Dental Biomaterials Research Chair, College of Applied Medical SciencesKing Saud UniversityRiyadhKingdom of Saudi Arabia
  6. 6.Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku and City of Turku Welfare Division, Oral Health Care, Turku, Finland and King Saud University, Visiting Professor ProgramRiyadhKingdom of Saudi Arabia
  7. 7.Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China and Visiting Professor Program, King Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations