Advertisement

Mechanics of Composite Materials

, Volume 51, Issue 2, pp 139–156 | Cite as

Prediction of Accumulation of Technological Stresses in a Pipeline Upon its Repair by a Composite Band

  • H. Altenbach
  • K. Naumenko
  • G. L’vov
  • V. Sukiasov
  • A. Podgorny
Article

The problem on the formation of stress fields in a pipeline with a repair composite band during the solidification of the polymer resin is considered. Heating of the composite material due to the heat release during the polymerization reaction is modeled. Two-dimensional pictures of location of the glass transition front during cooling are obtained. A numerical analysis of the stress state of a fragment of the pipeline and the composite band during the cooling process is performed. The effect of matrix shrinkage during its glass transition on the level of the technological stresses is analyzed.

Keywords

pipeline with a repair band glass transition front technological stresses 

Notes

Acknowledgments

This study is performed within the framework of the international project “Innovative Nondestructive Testing and Advanced Composite Repair of Pipelines with Volumetric Surface Defects (INNOPIPES),” and within the framework of the joint bilateral projects Leonhard-Euler-Programm and Ostpartnerschaften (DAAD).

References

  1. 1.
    M. Shamsuddoha, I. M. Mainul, T. Aravinthan, A. Manalo, and K.-T. Lau, “Effectiveness of using fiber-reinforced polymer composites for underwater steel pipeline repairs,” Compos. Struct., 100, March, 40-54 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Lukacs, G. Nagy, I. Torok, J. Egert, and B. Pere, “Experimental and numerical investigations of external reinforced damaged pipelines,” Procedia Eng., 2, Iss. 1, April, 1191-1200 (2010).CrossRefGoogle Scholar
  3. 3.
    M. Shamsuddoha, I. M. Mainul, T. Aravinthan, A. Manalo, and K.-T. Lau, “Characterization of mechanical and thermal properties of epoxy grouts for composite repair of steel pipelines,” Mater. Design, 52, December, 315-327 (2013).CrossRefGoogle Scholar
  4. 4.
    S. M. Timothy, L. J. Allison, Ch. Molly, H. W. Roger, and W. K. Michael, “Performance of a carbon-fiber/epoxy composite for the underwater repair of pressure equipment,” Compos. Struct., 100, June, 542-547 (2013).CrossRefGoogle Scholar
  5. 5.
    H. S. Costa-Mattos, J. M. L. Reis, R. F. Sampaio, and V. A. Perrut, “An alternative methodology to repair localized corrosion damage in metallic pipelines with epoxy resins,” Mater. Design, 30, October, 3581-3591 (2009).CrossRefGoogle Scholar
  6. 6.
    M. F. Köpple, S. Lauterbach, and W. Wagner, “Composite repair of through-wall defects in pipework — Analytical and numerical models with respect to ISO/TS 24817,” Compos. Struct., 95, December, 173-178 (2013).CrossRefGoogle Scholar
  7. 7.
    C. Alexander and O. O. Ochoa, “Extending onshore pipeline repair to offshore steel risers with carbon-fiber reinforced composites,” Compos. Struct., 92, August, 499-507 (2010).CrossRefGoogle Scholar
  8. 8.
    R. Sen and G. Mullins, “Application of FRP composites for underwater piles repair,” Composites: Part B: Eng., 38, February, 751-758 (2007).CrossRefGoogle Scholar
  9. 9.
    D. P. Romilly and R. J. Clark, “Elastic analysis of hybrid bonded joints and bonded composite repairs,” Compos. Struct., 82, February, 563-576 (2008).CrossRefGoogle Scholar
  10. 10.
    R. Jones, “A scientific evaluation of the approximate 2D theories for composite repairs to cracked metallic components,” Compos. Struct., 87, February, 151-160 (2009).CrossRefGoogle Scholar
  11. 11.
    M. V. Seica and J. A. Packer, “FRP materials for the rehabilitation of tubular steel structures, for underwater applications,” Compos. Struct., 80, May, 440-450 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Shouman and F. Taheri, “Compressive strain limits of composite repaired pipelines under combined loading states,” Compos. Struct., 93, December, 1538-1548 (2011).CrossRefGoogle Scholar
  13. 13.
    W. K. Goertzen and M. R. Kessler, “Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair,” Composites: Part B, 38, June, 1-9 (2007).CrossRefGoogle Scholar
  14. 14.
    J. M. Duell, J. M. Wilson, and M. R. Kessler, “Analysis of a carbon composite overwrap pipeline repair system,” Int. J. Press. Vess. Piping, 85, October, 782-788 (2008).CrossRefGoogle Scholar
  15. 15.
    H. Toutanji and S. Dempsey, “Stress modeling of pipelines strengthened with advanced composites materials,” Thin-Walled Struct., 39, February, 153-165 (2001).CrossRefGoogle Scholar
  16. 16.
    N. Saeed, H. Ronagh, and A. Virk, “Composite repair of pipelines, considering the effect of live pressure-analytical and numerical models with respect to ISO/TS 24817 and ASME PCC-2 composites,” Composites: Part B: Engineering, 58, October, 605-610 (2014).CrossRefGoogle Scholar
  17. 17.
    M. R. Tchoquessi Diodjo, L. Belec, E. Aragon, F. X. Perrin, M. Bonnaudet, L. Lanarde, M. Meyer, and Y. Joliff, “Numerical modeling of pipe internal stresses induced during the coating process — Influence of pipe geometric characteristics on stress state,” Mater. Design, 52, May, 429-440 (2013).CrossRefGoogle Scholar
  18. 18.
    S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 5, January, 58-80 (1971).CrossRefGoogle Scholar
  19. 19.
    Petroleum, petrochemical and natural gas industries — composite repairs of pipework — qualification and design, installation, testing and inspection. ISO/TS 24817, Int. Organiz. Standard. (ISO), London (2006).Google Scholar
  20. 20.
    The American Society of Mechanical Engineers. Repair of pressure equipment and piping. ASME PCC-2006, ASME, New York (2006).Google Scholar
  21. 21.
    R. A. Esmaeel, M. A. Khan, and F. Taheri, “Assessment of the environmental effects on the performance of FRP repaired steel pipes subjected to internal pressure,” J. Press. Vess. Technol., 134, July, 041702-041709 (2012).CrossRefGoogle Scholar
  22. 22.
    J. L. Otegui, A. Cisilino, A. E. Rivas, M. Chapetti, and G. Soula, “Influence of multiple sleeve repairs on the structural integrity of gas pipelines,” Int. J. Press. Vess. Piping, 79, November, 759-765 (2002).CrossRefGoogle Scholar
  23. 23.
    A. P. Cisilino, M. D. Chapetti, and J. L. Otegui, “Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines,” Int. J. Press. Vess. Piping, 79, November, 67-76 (2002).CrossRefGoogle Scholar
  24. 24.
    L. Moshinskii, Epoxy Resins and Curing Agents, Arkadiya Press Ltd., Tel Aviv (1995).Google Scholar
  25. 25.
    ITW Polymer Technologies: URL: www.itwcompositepiperepair.com
  26. 26.
    Power Wrap. URL: www.powerwraplp.com
  27. 27.
    Clock Spring® Company LP: URL: http://www.clockspring.com
  28. 28.
    A. N. Guz’, T. T. Tomashevskii, N. A. Shul’ga, and V. S. Yakovlev, Technological Stresses and Deformations in Composite Materials. Manual [in Russian], Vyshcha Shkola, Kiev (1988).Google Scholar
  29. 29.
    M. I. Ojovan, “Viscosity and glass transition in amorphous oxides,” Adv. Condens. Matt. Phys., 2008, December, 1-23 (2008).CrossRefGoogle Scholar
  30. 30.
    J. A. Peck, G. Su-Seng, P. Li, and M. A. Stubblefield, “Light intensity effect on UV cured FRP coupled composite pipe joints,” Compos. Struct., 64, June, 539-546 (2004).CrossRefGoogle Scholar
  31. 31.
    M. Haider, P. Hubert, and L. Lessard, “Cure shrinkage characterization and modeling of a polyester resin containing low profile additives,” Composites: Part A: Appl. Sci. Manuf., 38, June, 994-1009 (2007).CrossRefGoogle Scholar
  32. 32.
    M. Zarrelli, A. A. Skordos, and I. K. Partridge, “Investigation of cure induced shrinkage in unreinforced epoxy resin,” Plast. Rubber Compos. Process Appl., 31, 377-384 (2002).CrossRefGoogle Scholar
  33. 33.
    H. T. Hahn and N. J. Pagano, “Curing stresses in composite laminates,” J. Compos. Mater., 9, January, 91-106 (1975).CrossRefGoogle Scholar
  34. 34.
    H. Altenbach, J. Altenbach, and W. Kissing, Mechanics of Composite Structural Elements, Springer-Verlag, Berlin (2004).CrossRefGoogle Scholar
  35. 35.
    H. Altenbach, V. Kushnevsky, and K. Naumenko, “On the use of solid-and shell-type finite elements in creep-damage predictions of thin walled structures,” Arch. Appl. Mech., 71, March, 164-181(2001).CrossRefGoogle Scholar
  36. 36.
    S. M. Shokrieh and M. Kamali, “Theoretical and experimental studies on residual stresses in laminated polymer composites,” J. Compos. Mater., 39, December, 2213-2225 (2005).CrossRefGoogle Scholar
  37. 37.
    S. R. White and H. T. Hahn, “Process modeling of composite materials: Residual stress development during cure. Part I. Model formulation,” J. Compos. Mater., 26, January, 2402-2422 (1992).CrossRefGoogle Scholar
  38. 38.
    A. Johnston and R. Vaziri, “A plane strain model for process-induced deformation of laminated composite structures,” J. Compos. Mater., 35, August, 1435-1469 (2001).Google Scholar
  39. 39.
    T. A. Bogetti and J. W. Jr. Gillespie, “Process-induced stress and deformation in thick-section thermoset composite laminates,” J. Compos. Mater., 26, May, 626-660 (1992).CrossRefGoogle Scholar
  40. 40.
    R. M. Jones, Mechanics of Composite Materials, Taylor & Francis Inc., New York (1999).Google Scholar
  41. 41.
    R. Abeyaratne and J. K. Knowles, Evolution of Phase Transitions. A Continuum Theory, Cambridge University Press, Cambridge (2006).CrossRefGoogle Scholar
  42. 42.
    A. Berezovski, J. Engelbrecht, and G. A. Maugin, Numerical Simulation of Waves and Fronts in Inhomogeneous Solids, World Scientific, New Jersey (2008).Google Scholar
  43. 43.
    V. A. Eremeyev and W. Pietraszkiewicz, “Thermomechanics of shells undergoing phase transition,” J. Mech. Phys. Solids, 59, April, 1395-1412 (2011).CrossRefGoogle Scholar
  44. 44.
    H. Altenbach, K. Naumenko, and P. A. Zhilin, “A micro-polar theory for binary media with application to phase-transition flow of fiber suspensions,” Continuum Mech. Thermodynam., 15, July, 539-570 (2003).CrossRefGoogle Scholar
  45. 45.
    S. Arrhenius, “On the reaction rate of the inversion of non-refined sugar upon souring,” Z. Phys Chem., 4, 226-48 (1889).Google Scholar
  46. 46.
    L. Xia, L. Zuo, S. Zha, S. Jiang, R. Guan, and D. Lu, “Kinetic research on low-temperature cure of epoxy adhesive,” Int. J. Adhes. Adhesives, 50, February, 255-264 (2014).CrossRefGoogle Scholar
  47. 47.
    M. E. Tuttle, Structural Analysis of Polymeric Composite Materials, Marcel Dekker, Inc., New York (2004).Google Scholar
  48. 48.
    D. Gay, S. V. Hoa, and S. W. Tsai, Composite Materials. Design and Applications, CRC Press, London (2004).Google Scholar
  49. 49.
    V. K. Choo, Fundamentals of Composite Materials, Knowen Academic Press Inc., Dover, Del. (1990).Google Scholar
  50. 50.
    V. E. Gul’ and V. N. Kuleznev, Structure and Mechanical Properties of Polymers, Vysshaya Shkola, Moscow (1972).Google Scholar
  51. 51.
    M. Weps, K. Naumenko, and H. Altenbach, “Unsymmetric three-layer laminate with soft core for photovoltaic modules,” Compos. Struct., 105, May, 332-339 (2013).CrossRefGoogle Scholar
  52. 52.
    H. Altenbach, D. A. Beschetnikov, G. I. Lvov, K. Naumenko, and V. G. Sukiasov, “Kontaktwechselwirkung einer Rohrleitung mit der Reparaturbandage aus einem Kompositwerkstoff,” Forschung im Ingenieurwesen, 78, January, 59-67 (2014).CrossRefGoogle Scholar
  53. 53.
    K. Naumenko and V. A. Eremeyev, “A layer-wise theory for laminated glass and photovoltaic panels,” Compos. Struct., 112, February, 283-291 (2014).CrossRefGoogle Scholar
  54. 54.
    H. Altenbach and K. Naumenko, “Creep bending of thin-walled shells and plates by consideration of finite deflections,” Comput. Mech., 19, May, 490-495 (1997).CrossRefGoogle Scholar
  55. 55.
    H. Altenbach, C. Huang, and K. Naumenko, “Creep-damage predictions in thin-walled structures by use of isotropic and anisotropic damage models,” J. Strain Analys. Eng. Des., 37, January, 265-275 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • H. Altenbach
    • 1
  • K. Naumenko
    • 2
  • G. L’vov
    • 2
  • V. Sukiasov
    • 2
  • A. Podgorny
    • 2
  1. 1.Otto von Guericke University of MagdeburgMagdeburgGermany
  2. 2.Kharkov Polytechnical InstituteKhar’kovUkraine

Personalised recommendations