Advertisement

Mechanics of Composite Materials

, Volume 50, Issue 5, pp 613–622 | Cite as

Elastic Properties of a Polymer/Silicate Composite with Platelike Multilayer Filler Particles

  • R. D. MaksimovEmail author
  • E. Plume
Article

A variant of stepwise calculations of the elastic constants of a composite containing platelike multilayer filler particles is presented. First, the effective characteristics of unexfoliated particles in the form of multilayer stacks with interlaminar galleries enlarged as a result of intercalation of polymer are determined. Then, the independent elastic constants of the transversely isotropic representative structural elements of a composite in which multilayer particles are located strictly coplanarly, i.e., parallel to each other, are calculated. Finally, the elastic constants of a composite with randomly oriented particles are obtained by using the method of orientational averaging. Data on the influence of the number of monolayers in the unexfoliated silicate filler particles on their reinforcing efficiency are reported and discussed.

Keywords:

polymer/silicate composite composite modeling elastic constants platelike multilayer particles 

Notes

Acknowledgments

This study was financially supported by ERDAF within the framework of Project No. 2010/0290/ 2DP/2.1.1.1.0/10/APIA/VIAA/053 and by the Ministry of Education and Sciences of Latvia according to Project No. 3 of State Research Program No. 2.

References

  1. 1.
    M. Alexandre and Ph. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. Sci. Eng., 28, 1-63 (2000).CrossRefGoogle Scholar
  2. 2.
    X. Liu and Q. Wu, “PP/clay nanocomposites prepared by grafting-melt intercalation,” Polymer, 42, 10013-10019 (2011).CrossRefGoogle Scholar
  3. 3.
    J.-H. Chang and Y. Ukan, “Nanocomposites of polyurethane with various organoclays: thermomechanical properties, morphology, and gas permeability,” J. Polym. Sci. Pt B: Polymer Physics, 40, 670-677 (2002).CrossRefGoogle Scholar
  4. 4.
    S.-Y. Moon, J.-K. Kim, C. Nah, and Y.-S. Lee, “Polyurethane/montmorillonite nanocomposites prepared from crystalline polyols, using 1,4-dutanediol and organoclay hybrid as chain extenders,” Europ. Polym. J., 40, 1615-1621 (2004).CrossRefGoogle Scholar
  5. 5.
    R. D. Maksimov, S. Gaidukovs, M. Kalnins, J. Zicans, and E. Plume, “A nanocomposite based on a styrene-acrylate copolymer and native montmorillonite clay. 2. Modeling the elastic properties,” Mech. Compos. Mater., 42, No. 2, 163-172 (2006).CrossRefGoogle Scholar
  6. 6.
    S. Gaidukov, R. D. Maksimov, U. Cabulis, E. Plume, and A. Stunda-Zujeva, “Mechanical properties of a rigid polyurethane/ montmorillonite composite prepared by using a biopolyol,” Mech. Compos. Mater., 49, No. 4, 333-344 (2013).CrossRefGoogle Scholar
  7. 7.
    R. Merijs Meri, J. Zicans, R. Maksimov, T. Ivanova, M. Kalnins, R. Berzina, and G. Japins, “Elasticity and long-term behavior of recycled polyethylene terephthalate (rPET)/montmorillonite (MMT) composites,” Compos. Struct., 111, 453-458 (2014).CrossRefGoogle Scholar
  8. 8.
    R. Hill, “Elastic properties of reinforced solids; some theoretical principles,” J. Mech. Phys. Solids, 11, No. 5, 357-372 (1963).CrossRefGoogle Scholar
  9. 9.
    R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 13, No. 4, 213-222 (1965).CrossRefGoogle Scholar
  10. 10.
    T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metallurgica, 21, No. 5, 571-574 (1973).CrossRefGoogle Scholar
  11. 11.
    J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. Roy. Soc. Series A, 241, 376-396 (1957).CrossRefGoogle Scholar
  12. 12.
    D. Maksimov and E. Plume, “Elastic properties of a polyurethane/montmorillonite nanocomposite,” Mech. Compos. Mater., 48, No. 5, 487-498 (2012).CrossRefGoogle Scholar
  13. 13.
    A. Lagzdins, R. D. Maksimov, and E. Plume, “Anisotropy of elasticity of a composite with irregularly oriented anisometric filler particles,” Mech. Compos. Mater., 45, No. 4, 345-358 (2009).CrossRefGoogle Scholar
  14. 14.
    A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, and T. Kurauchi, “Synthesis of Nylon6-clay hybrid,” J. Mater. Res., 8, 1179-1184 (1993).CrossRefGoogle Scholar
  15. 15.
    J.-J. Luo and I. M. Daniel, “Characterization and modeling of mechanical behavior of polymer/clay nanocomposites,” Compos. Sci. Technol., 63, 1607-1616 (2003).CrossRefGoogle Scholar
  16. 16.
    T. D. Fornes and D. R. Paul, “Modeling the properties of nylon6/clay nanocomposites using composite theories,” Polymer, 44, 4993-5013 (2003).CrossRefGoogle Scholar
  17. 17.
    R. Renz, Zum zügigen and zyklischen Verformungsverhalten Polymerer Hartschaumstoffe. Dis. zur Erlangung des akad. Grades eines Doktor-Ingenieurs, Karlsruhe (1977).Google Scholar
  18. 18.
    U. Cabulis, M. Kirpluks, and J. Andersons, “The effect of montmorillonite type nanoparticles on stiffness and flammability of rapeseed oil based polyisocyanurate foams,” Key Eng. Mater., 559, 19-24 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Polymer MechanicsUniversity of LatviaRigaLatvia

Personalised recommendations