Advertisement

Mechanics of Composite Materials

, Volume 49, Issue 3, pp 325–332 | Cite as

A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method

  • A. Fereidoon
  • R. Rafiee
  • R. Maleki Moghadam
Article

A modal analysis of a carbon-nanotube-reinforced polymer (CNTRP) is performed using a 3D finite-element model. A multiscale finite-element model consisting of a single-walled carbon nanotube, a nonbonded interphase region, and the surrounding polymer is constructed. The modal analysis is executed with two types of boundary conditions to obtain the natural frequencies of the CNTRP, and the frequencies obtained are compared with the natural frequencies of a neat polymer. The results show a considerable growth in the natural frequencies of reinforced composites doped even with a small portion of carbon nanotubes.

Keywords

carbon nanotubes finite-element analysis multiscale modeling modal analysis 

References

  1. 1.
    S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 568 (1991).CrossRefGoogle Scholar
  2. 2.
    M. M. Shokrieh and R. Rafiee, “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites,” Mech. Compos. Mater., 46, No. 2, 155–172 (2010).CrossRefGoogle Scholar
  3. 3.
    A. Sakhaee-Pour, M. T. Ahmadian, and A. Vafai, “Vibrational analysis of single-walled carbon nanotubes using beam element,” Thin-Wall Struct., 47, 646–652 (2009).CrossRefGoogle Scholar
  4. 4.
    C. Li and T.-W. Chou, “Vibrational behaviors of multiwalled-carbonnanotube- based nanomechanical resonators,” Appl. Phys. Lett., 84, No. 1, 121–123 (2004).CrossRefGoogle Scholar
  5. 5.
    D. Sanchez-Portal, E. J. Artacho, and J. M. Soler, “Ab’initio structural, elastic, and vibrational properties of carbon nanotubes,” Phys. Rev. B, 59, No. 19, 12678–12688 (1999).CrossRefGoogle Scholar
  6. 6.
    C. Q. Ru, “Intrinsic vibration of multiwalled carbon nanotubes,” Int. J. Nonlinear Sci. Numer. Simul., 3, Nos. 3–4, 735 (2002).Google Scholar
  7. 7.
    Y. Zhang, G. Liu, and X. Han, “Transverse vibrations of double-walled carbon nanotubes under compressive axial load,” Phys. Lett. A, 340, 258–266 (2005).CrossRefGoogle Scholar
  8. 8.
    G. Dereli and C. Ozdogan, “Structural stability and energetics of singlewalled carbon nanotubes under uniaxial strain,” Phys. Rev. B, 67, No. 3, 035416 (2003).CrossRefGoogle Scholar
  9. 9.
    G. D. Mahan, “Oscillations of a thin hollow cylinder: carbon nanotubes,” Phys. Rev. B, ; 65, 235402 (2002).Google Scholar
  10. 10.
    C. Li and T.-W. Chou, “Single-walled nanotubes as ultrahigh frequency nanomechanical resonators,” Phys. Rev. B, 68, 073405 (2003).CrossRefGoogle Scholar
  11. 11.
    R. F. Gibson, E. O. Ayorinde, and Y. F. Wen, “Vibrations of carbon nanotubes and their composites: A review,” Compos. Sci. Technol., 67, 1–28 (2007).CrossRefGoogle Scholar
  12. 12.
    A. F. Ávila, L. V. Donadon, H. V. Duarte, “Modal analysis on nanoclay epoxy-based fiber-glass laminates,” Compos. Struct., 83, No. 3, 324–333 (2008).CrossRefGoogle Scholar
  13. 13.
    G. Formica, W. Lacarbonara, and R. Alessi, “Vibrations of carbon nanotube-reinforced composites,” J. Sound Vibrat., 329, 1875–1889 (2010).CrossRefGoogle Scholar
  14. 14.
    M. M. Shokrieh and R. Rafiee, “Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber,” Mech. Res. Commun., 37, 235–240, (2010).CrossRefGoogle Scholar
  15. 15.
    C. Li and T. W. Chou, “A structural mechanics approach for the analysis of carbon nanotubes,” Int. J. Solids Struct., 40, 2487–2499 (2003).CrossRefGoogle Scholar
  16. 16.
    K. I. Tserpes and P. Papanikos, “Finite-element modeling of single-walled carbon nanotubes,” Compos. Part B, Eng., 36, 468–477 (2005).Google Scholar
  17. 17.
    A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu, and M. N. Ghasemi-Nejhad, “Analytical and numerical techniques to predict carbon nanotubes properties,” Int. J. Solids Struct., 43, 6832–6854 (2006).CrossRefGoogle Scholar
  18. 18.
    C. W. S. To, “Bending and shear moduli of single-walled carbon nanotubes,” Finite Element Anal. Des., 42, 404–413 (2006).CrossRefGoogle Scholar
  19. 19.
    M. M. Shokrieh and R. Rafiee, “Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach,” J. Mater. Des., doi: 10.1016/j.matdes.2009.07.058.
  20. 20.
    ANSYS Inc. Theory manual. SAS IP Inc. 2009.Google Scholar
  21. 21.
    S. B. Sinnott, “Chemical functionalization of carbon nanotubes,” J. Nanosci. Nanotechnol., 2, 113–123 (2002).CrossRefGoogle Scholar
  22. 22.
    J. L. Bahr and J. M. Tour, “Covalent chemistry of single-wall carbon nanotubes,” J. Mater. Chem., 12, 1952–1958 (2002).CrossRefGoogle Scholar
  23. 23.
    S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, “Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces,” J. Phys. Chem., B, 106, 3046–3048 (2002).CrossRefGoogle Scholar
  24. 24.
    M. L. Shofner, V. N. Khabashesku, and E. V. Barrera, “Processing and mechanical properties of fluorinated single-wall carbon nanotube-polyethylene composites,” Chem. Mater., 18, 906–913 (2006).CrossRefGoogle Scholar
  25. 25.
    F. Buffa, G. A. Abraham, B. P. Grady, and D. Resasco, “Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites,” J. Polym. Sci. Part B. Polym. Phys., 45, 490–501 (2007).CrossRefGoogle Scholar
  26. 26.
    C. A. Cooper, S. R. Cohen, A. H. Barber, and H. D. Wagner, “Detachment of nanotubes from a polymer matrix,” Appl. Phys. Lett., 81, No. 20, 3873–3875 (2002).CrossRefGoogle Scholar
  27. 27.
    A. H. Barber, S. R. Cohen, H. D. Wagner, “Measurement of carbon nanotube-polymer interfacial strength,” Appl. Phys. Lett., 82, No. 23, 4140–4142 (2003).CrossRefGoogle Scholar
  28. 28.
    V. Lordi and N. Yao, “Molecular mechanics of binding in carbon-nanotube– polymer composites,” J. Mater. Res., 15, No. 12, 2770–2779 (2000).CrossRefGoogle Scholar
  29. 29.
    Y. Kuang and X. He, “Young’s modulus of functionalized single-walled carbon nanotubes under tensile loading,” Compos. Sci. Technol., 2008; doi:  10.1016/j.compscitech.2008.09.044
  30. 30.
    H. Wan, F. Delale, and L. Shen, “Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites,” Mech. Res. Commun., 32, 481–489 (2005).CrossRefGoogle Scholar
  31. 31.
    M. R. Ayatollahi, S. Shadlou, and M. M. Shokrieh, “Multiscale modeling of mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading,” Compos. Struct., 93, 2250–2259 (2011).CrossRefGoogle Scholar
  32. 32.
    A. H. Barber, S. R. Cohen, S. Kenig, and H. D. Wagner, „Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix,” Compos. Sci. Technol., 64, 2283–2289 (2004).Google Scholar
  33. 33.
    F. Karimzadeh, S. Ziaei-Rad, and S. Adibi, “Modeling considerations and material properties evaluation in analysis of carbon nano-tubes composite,” Metall. Mater. Trans. B, 38, 695–705 (2007).CrossRefGoogle Scholar
  34. 34.
    C. Li and T. W. Chou, “Multiscale modeling of carbon nanotube reinforced polymer composites,” J. of Nanosci. Nanotechnol., 3, 423–430 (2003).CrossRefGoogle Scholar
  35. 35.
    C. Li and T. W. Chou, “Multiscale modeling of compressive behavior of carbon nanotube/polymer composites,” Compos. Sci. Technol., 66, 2409–2414 (2006).CrossRefGoogle Scholar
  36. 36.
    S. K. Georgantzinos, G. I. Giannopoulos, and N. K. Anifantis, “Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method,” Theor. Appl. Fract. Mech., 158–164 (2009).Google Scholar
  37. 37.
    G. I. Giannopoulos, S. K. Georgantzinos, and N. K. Anifantis, “A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites,” Compos. Part B, 41, No. 8, 594–601 (2010).CrossRefGoogle Scholar
  38. 38.
    J. M. Wernik and S. A. Meguid, “Multiscale modeling of the nonlinear response of nano-reinforced polymers,” Acta Mech., 217, 1–16 (2011).CrossRefGoogle Scholar
  39. 39.
    L. Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K. C. Hwang, and B. Liu, “A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force,” J. Mech. Phys. Solids, 54, 2436–2452 (2006).CrossRefGoogle Scholar
  40. 40.
    E. Madenci and I. Guven, “The finite element method and applications in engineering using ANSYS,” Springer, Library of Congress Control Number: 2005052017Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentSemnan UniversitySemnanIran
  2. 2.Composites Research Laboratory, Faculty of New Sciences & TechnologiesUniversity of TehranTehranIran

Personalised recommendations