Mechanics of Composite Materials

, Volume 47, Issue 5, pp 497–504 | Cite as

The effect of radiation modification and of a uniform magnetic field on the deformation properties of polymer composite blends

  • I. Reinholds
  • V. Kalkis
  • R. D. Maksimov
  • J. Zicans
  • R. Merijs Meri

An experimental study of radiation-modified blends of high-density polyethylene with a chlorinated polyethylene exposed to a constant magnetic field with induction equal to 0.7, 1.0, 1.4, and 1.8 T is presented. A preliminary gamma irradiation has been performed with absorbed doses equal to 50, 100, and 200 kGy. The main attention is devoted to the investigation of deformation (elastic and viscoelastic) properties of the material. Data showing the effect of the absorbed dose of gamma irradiation and the induction of magnetic field on the elastic modulus and creep of the material under a constant stress are obtained.


polyethylene chlorinated polyethylene blend composition gamma irradiation magnetic field deformation properties 


  1. 1.
    A. A. Dontsov, G. Ya. Lozovik, and S. P. Novitskaya, Chlorinated Polymers [in Russian] Khimiya, Moscow (1979).Google Scholar
  2. 2.
    R. D. Maksimov, T. Ivanova, M. Kalnins, and J. Zicans, “Mechanical properties of high-density polyethylene/chlorinated polyethylene blends,” Mech. Compos. Mater., 40, No. 4, 331–340 (2004).CrossRefGoogle Scholar
  3. 3.
    R. D. Maksimov, T. Ivanova, J. Zicans, and V. Kalkis, “Mechanical properties of blends of low-density polyethylene with chlorinated polyethylene,” Mech. Compos. Mater., 41, No. 3, 267–276 (2005).CrossRefGoogle Scholar
  4. 4.
    A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, Oxford (1960).Google Scholar
  5. 5.
    D. Fink (ed.), Fundamentals of Ion-Irradiated Polymers, Springer-Verlag, Heidelberg, Berlin (2010).Google Scholar
  6. 6.
    F. A. Makhlis, Radiation Physics and Chemistry of Polymers [in Russian], Atomizdat, Moscow (1972).Google Scholar
  7. 7.
    J. G. Drobny, RadiationTechnology for Polymers, CRC Press, Taylor & Francis Group, New York (2010).Google Scholar
  8. 8.
    A. Singh and J. Silverman, Radiation Processing of Polymers, Oxford Univ. Press, New York (1991).Google Scholar
  9. 9.
    R. Merijs Meri, J. Zicans, M. Kalnins, and V. Kalkis, “Tensile deformational properties of poly(ethylene terephtalate) and polyethylene-based multiphase systems,” Chem. Technol., 35, No. 1, 6–11 (2005).Google Scholar
  10. 10.
    V. Kalkis, M. Kalnins, R. D. Maksimov, and J. Zicans, “Features of thermomechanical properties of radiation-modified blends of high-density polyethylene with liquid-crystalline copolyester,” Mech. Compos. Mater., 34, No. 1,Google Scholar
  11. 11.
    V. Kalkis, R. D. Maksimov, and J. Zicans, “Thermomechanical properties of radiation-modified blends of polyethylene with a liquid-crystalline copolyester,” Polym. Eng. Sci., 39, No. 9, 1375–1382 (1999).CrossRefGoogle Scholar
  12. 12.
    O. Revjakin, J. Zicans, M. Kalnins, V. Kalkis, and R. D. Maksimov, “Thermomechanical properties of radiation-modified polyethylene/ethylene-propylene-diene copolymer/liquid-crystalline copolyester blends,” Coll. Czechoslovak Chem. Communicat., 64, No. 7, 1180–1192 (1999).CrossRefGoogle Scholar
  13. 13.
    D. Pizele, V. Kalkis, R. Merijs Meri, T. Ivanova, and J. Zicans, “On the mechanical and thermomechanical properties of low-density polyethylene/ethylene-a-octene copolymer blends,” Mech. Compos. Mater., 44, No. 2, 191–196 (2008).CrossRefGoogle Scholar
  14. 14.
    V. Kalkis, R. D. Maksimov, M. Kalnins, J. Zicans, T. Bocoka, and O. Revjakin, “Thermomechanical and adhesive properties of radiation-modified polymer composites for thermosetting products,” Mech. Compos. Mater., 36, No. 3, 223–232 (2000).CrossRefGoogle Scholar
  15. 15.
    R. D. Maksimov, V. Kalkis, T. Ivanova, and E. Plume, “Prediction of the stress-relaxation behavior in heat-shrinkable radiation-modified polymer materials,” Mech. Compos. Mater., 38, No. 3, 199–208 (2002).CrossRefGoogle Scholar
  16. 16.
    T. Ivanova, T. Bocoka, J. Zicans, V. Kalkis, and M. Kalnins, “Properties of radiation-modified blends of polyethylene with elastomers and a liquid-crystalline copolyester,” Macromol. Symposia, 170, 105–113 (2001).CrossRefGoogle Scholar
  17. 17.
    V. Kalkis, J. Zicans, M. Kalnins, T. Bocoka, and A. Bledzki, “Studies on the morphology and the rheological, mechanical, and thermorelaxation properties of chemically and radiation-modified polyethylene/ethylene-propylene-diene copolymer blends,” J. Macromol. Sci., A35, Nos. 7/8, 1217–1237 (1998).Google Scholar
  18. 18.
    V. Kalkis, A. Viksne, J. Zicans, and A. K. Bledzki, “Heat-shrinkable film on the base of polyolefin wastes,” Die Angew. Makromol. Chemie., 249, No. 4351, 151–160 (1997).Google Scholar
  19. 19.
    A. E. Goulas, K. A. Riganakos, and M. G. Kontominas, “Effect of ionizing radiation on the physicochemical and mechanical properties of commercial multilayer coextruded flexible plastics packaging materials,” Radiat. Phys. Chem., 68, Iss. 5, 865–872 (2003).CrossRefGoogle Scholar
  20. 20.
    G. Lewis, “Properties of crosslinked ultra-high-molecular-weight polyethylene,” Biomaterials, 22, 371–401 (2001).CrossRefGoogle Scholar
  21. 21.
    A. N. Tynnyi and A. A. Belikovskii, “On the effect of irradiation on the physicomechanical properties of polymer materials,” Fiz.-Khim. Mekh. Polim., 3, No. 5, 602–618 (1967).Google Scholar
  22. 22.
    M. A. Mokulskii, Yu. S. Lazurkin, M. B. Vivejskii, and V. U. Kozin, “Investigation of the mechanical properties of polymers during irradiation,” Vysokomol. Soed., 2, No. 1, 103–109 (1960).Google Scholar
  23. 23.
    B. F. Stepanov, S. E. Baysberg, and V. L. Karpov, “Effect of irradiation dose on the relaxation creep of polymers,” Fiz.-Khim. Mekh. Polim., 7, No. 4, 78–83 (1971).Google Scholar
  24. 24.
    Yu. P. Rodin, “Constant magnetic fields and physicomechanical properties of polymers,” Mech. Compos. Mater., No. 3, 490–503 (1991).Google Scholar
  25. 25.
    V. A. Zhorin, L. L. Mukhina, and I. V. Razumovskaya, “Effect of magnetic treatment on the microhardness of polyethylene and polypropylene,” Vysokomol. Soed., 40B, No. 1, 1213–1215 (1998).Google Scholar
  26. 26.
    N. N. Peschanskaya and P. P. Yakushev, “Creep of polymers in a constant magnetic field,” Fiz. Tverd. Tela, 39, No. 9, 1690–1692 (1997).Google Scholar
  27. 27.
    N. N. Peschanskaya and P. P. Yakushev, “Deformation of solid polymers in a constant magnetic field,” Fiz. Tverd. Tela, 45, No. 6, 1130–1134 (2003).Google Scholar
  28. 28.
    P. A. Aleksandrov, V. V. Budaragin, M. N. Shakhov, N. I. Nikanorova, and E. S. Trofimchuk, “Mechanical properties of some materials in a magnetic field,” Vopr. Atomn. Nauki Tekhn., Ser. Termoyad. Sintez, No. 1, 24–30 (2006).Google Scholar
  29. 29.
    N. N. Peschanskaya and A. B. Sinani, “Effect of the magnetic field on nanometer-scale deformation jumps in polymers,” Phys. Solid State, 50, No. 1, 182–187 (2008).CrossRefGoogle Scholar
  30. 30.
    C. J. Foot, Atomic Physics, Oxford Univ. Press Inc., New York (2005).Google Scholar
  31. 31.
    M. Dole, “Cross-linking and crystallinity in irradiated polypropylene,” Polym. Plast. Tecnol. Eng., 13, 41–64 (1979).CrossRefGoogle Scholar
  32. 32.
    V. N. Handlos and K. A. Singer, “Gel formation in polymers undergoing radiation-induced crosslinking and scission,” J. Appl. Polym. Sci., 20, 3375–3386 (1976).CrossRefGoogle Scholar
  33. 33.
    A. Keller and G. Ungar, “Radiation effect and crystallinity in polyethylene,” Radiat. Phys. Chem., 22, 155–181 (1983).Google Scholar
  34. 34.
    C. J. Chen and G. S. Y. Yeh, “Radiation-induced crosslinking. III. Effect on the crystalline and amorphous density fluctuations of polyethylene,” Colloid Polym. Sci., 269, No. 4, 353–363 (1991).CrossRefGoogle Scholar
  35. 35.
    M. D. Ries and L. Pruitt, “Effect of cross-linking on the microstructure and mechanical properties of ultrahigh-molecularweight polyethylene,” Clin. Orthop. Relat. Res., 440, 149–156 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • I. Reinholds
    • 1
  • V. Kalkis
    • 1
  • R. D. Maksimov
    • 2
  • J. Zicans
    • 3
  • R. Merijs Meri
    • 3
  1. 1.Chemical DepartmentUniversity of LatviaRigaLatvia
  2. 2.Institute of Polymer MechanicsUniversity of LatviaRigaLatvia
  3. 3.Institute of Polymer MaterialsRiga Technical UniversityRigaLatvia

Personalised recommendations