Mechanics of Composite Materials

, Volume 44, Issue 6, pp 549–556 | Cite as

The onset of mixed-mode intralaminar cracking in a cross-ply composite laminate

  • J. Andersons
  • E. Spārniņš
  • R. Joffe

The intralaminar fracture toughness of a unidirectionally reinforced glass/epoxy composite is determined experimentally at several mode I and mode II loading ratios. The crack propagation criterion, expressed as a quadratic form in terms of single-mode stress intensity factors (alternatively, linear in terms of energy release rates), approximates the test results reasonably well. The mixed-mode cracking criterion obtained is used to predict the intralaminar crack on set in a cross-ply glass/epoxy composite under off-axis tensile loading.


polymer-matrix composites laminates intralaminar cracking fracture toughness mixed-mode loading 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Nairn, “Matrix microcracking in composites,” in: A. Kelly and C. Zweben (eds.), Comprehensive Composite Materials. Vol. 2, Pergamon (2000), pp. 403–432.Google Scholar
  2. 2.
    M. Yu. Kashtalyan and C. Soutis, “Mechanisms of internal damage and their effect on the behavior and properties of cross-ply composite laminates,” Int. Appl. Mech., 38, 641–657 (2002).CrossRefGoogle Scholar
  3. 3.
    J.-M. Berthelot, “Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading,” Appl. Mech. Rev., 56, 111–147 (2003).CrossRefGoogle Scholar
  4. 4.
    L. Boniface, P. A. Smith, M. G. Bader, and A. H. Rezaifard, “Transverse ply cracking in cross-ply CFRP laminates — initiation or propagation controlled?” J. Compos. Mater., 31, 1080–1112 (1997).Google Scholar
  5. 5.
    P. Gudmundson and J. Alpman, “Initiation and growth criteria for transverse matrix cracks in composite laminates,” Compos. Sci. Technol., 60, 185–195 (2000).CrossRefGoogle Scholar
  6. 6.
    A. Parvizi, K. Garrett, and J. Bailey, “Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates,” J. Mater. Sci., 13, 195–201 (1978).CrossRefGoogle Scholar
  7. 7.
    G. J. Dvorak and N. Laws, “Analysis of progressive matrix cracking in composite laminates II. First ply failure,” J. Compos. Mater., 21, 309–329 (1987).CrossRefGoogle Scholar
  8. 8.
    S. Abe, K. Kageyama, I. Ohsawa, M. Kanai, and T. Kato, “Analytical prediction and experiment of transverse lamina cracking in multidirectionally reinforced symmetric laminates,” in: Proc. 7th Japan Int. SAMPE Symp. Exhibit. (2001), pp. 817–820.Google Scholar
  9. 9.
    J. Andersons, R. Joffe, E. Spārniņš, and O. Rubenis, “Progressive cracking mastercurves of the transverse ply in a laminate,” Polym. Compos. (in press).Google Scholar
  10. 10.
    J. Andersons, E. Spārniņš, O. Rubenis, and R. Joffe, “Estimation of laminate stiffness reduction due to cracking of a transverse ply by employing crack initiation-and propagation-based mastercurves, ” Mech. Compos. Mater., 44, No. 5, 441–450 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Kashtalyan and C. Soutis, “Analysis of composite laminates with intra-and interlaminar damage,” Progr. Aerosp. Sci., 41, 152–173 (2005).CrossRefADSGoogle Scholar
  12. 12.
    L. N. McCartney, “Model to predict effects of triaxial loading on ply cracking in general symmetric laminates,” Compos. Sci. Technol., 60, 2255–2279 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Kashtalyan and C. Soutis, “Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting,” Composites, A, 31, 335–351 (2000).CrossRefGoogle Scholar
  14. 14.
    M. Kashtalyan and C. Soutis, “Modelling stiffness degradation due to matrix cracking in angle-ply composite laminates,” Plast. Rubber Compos., 29, 482–488 (2000).Google Scholar
  15. 15.
    L. N. McCartney, “Energy-based prediction of progressive ply cracking and strength of general symmetric laminates using an homogenisation method,” Composites, A, 36, 119–128 (2005).Google Scholar
  16. 16.
    L. N. McCartney, “Energy-based prediction of failure in general symmetric laminates,” Eng. Fract. Mech., 72, 909–930 (2005).CrossRefGoogle Scholar
  17. 17.
    P. Lundmark and J. Varna, “Constitutive relationships for laminates with ply cracks in in-plane loading,” Int. J. Damage Mech., 14, 235–259 (2005).CrossRefGoogle Scholar
  18. 18.
    P. Lundmark and J. Varna, “Crack face sliding effect on stiffness of laminates with ply cracks,” Compos. Sci. Technol., 66, 1444–1454 (2006).CrossRefGoogle Scholar
  19. 19.
    S. K. Bapanapalli, B. V. Sankar, and R. J. Primas, “Microcracking in cross-ply laminates due to biaxial mechanical and thermal loading,” AIAA J., 44, 2949–2957 (2006).CrossRefADSGoogle Scholar
  20. 20.
    D. G. Katerelos, P. Lundmark, J. Varna, and C. Galiotis, “Raman spectroscopy investigation of stiffness change and residual strains due to matrix cracking,” Mech. Compos. Mater., 42, 535–546 (2006).CrossRefGoogle Scholar
  21. 21.
    D. G. Katerelos, L. N. McCartney, and C. Galiotis, “Effect of off-axis matrix cracking on stiffness of symmetric angle-ply composite laminates,” Int. J. Fract., 139, 529–536 (2006).zbMATHCrossRefGoogle Scholar
  22. 22.
    D. T. G. Katerelos, P. Lundmark, J. Varna, and C. Galiotis, “Analysis of matrix cracking in GFRP laminates using Raman spectroscopy,” Compos. Sci. Technol., 67, 1946–1954 (2007).CrossRefGoogle Scholar
  23. 23.
    D. T. G. Katerelos, M. Kashtalyan, C. Soutis, and C. Galiotis, “Matrix cracking in polymeric composites laminates. Modelling and experiments,” Compos. Sci. Technol., 68, 2310–2317 (2008).CrossRefGoogle Scholar
  24. 24.
    Y. M. Han and H. T. Hahn, “Ply cracking and property degradations of symmetric balanced laminates under general in-plane loading,” Compos. Sci. Technol., 35, 377–397 (1989).CrossRefGoogle Scholar
  25. 25.
    M. Kashtalyan and C. Soutis, “Strain energy release rate for off-axis ply cracking in laminated composites,” Int. J. Fract., 112, L3–L8 (2001).CrossRefGoogle Scholar
  26. 26.
    M. Kashtalyan and C. Soutis, “Modelling off-axis ply matrix cracking in continuous fibre-reinforced polymer matrix composite laminates,” J. Mater. Sci., 41, 6789–6799 (2006).CrossRefGoogle Scholar
  27. 27.
    M. Kashtalyan and C. Soutis, “Stiffness and fracture analysis of laminated composites with off-axis ply matrix cracking,” Composites, A, 38, 1262–1269 (2007).CrossRefGoogle Scholar
  28. 28.
    A. Korjakin, R. Rikards, F. G. Buchholz, H. A. Richard, A. K. Bledzki, and H. Wang, “Investigations of interlaminar fracture toughness of laminated polymeric composites,” Mech. Compos. Mater., 34, 223–234 (1998).CrossRefGoogle Scholar
  29. 29.
    L. E. Crocker, S. L. Ogin, P. A. Smith, and P. S. Hill, “Intra-laminar fracture in angle-ply laminates,” Composites, A, 28, 839–846 (1997).CrossRefGoogle Scholar
  30. 30.
    V. Tamužs, J. Andersons, E. Spārniņš, and J. Varna, “Response of cross-ply composite to off-axis loading,” J. Compos. Mater., 36, 2125–2134 (2002).CrossRefGoogle Scholar
  31. 31.
    G. C. Sih, P. C. Paris, and G. R. Irwin, “On cracks in rectilinearly anisotropic bodies,” Int. J. Fract., 1, 189–203 (1965).CrossRefGoogle Scholar
  32. 32.
    Y. J. Yum and C. S. Hong, “Stress intensity factors in finite orthotropic plates with a crack under mixed mode deformation,” Int. J. Fract., 47, 53–67 (1991).CrossRefGoogle Scholar
  33. 33.
    R. Joffe, A. Krasnikovs, and J. Varna, “COD-based simulation of transverse cracking and stiffness reduction in [S/90n]s laminates,” Compos. Sci. Technol., 61, 637–656 (2001).CrossRefGoogle Scholar
  34. 34.
    H. T. Hahn and S. W. Tsai, “Nonlinear elastic behaviour of unidirectional composite laminae,” J. Compos. Mater., 7, 102–118 (1973).CrossRefGoogle Scholar
  35. 35.
    H. T. Hahn, “Nonlinear behaviour of laminated composites,” J. Compos. Mater., 7, 257–271 (1973).CrossRefGoogle Scholar
  36. 36.
    M. N. Nahas, “Analysis of non-linear stress-strain response of laminated fibre-reinforced composites,” Fibre Sci. Technol., 20, 297–313 (1984).CrossRefGoogle Scholar
  37. 37.
    C. T. Sun and Jianxin Tao, “Prediction of failure envelopes and stress/strain behaviour of composite laminates,” Compos. Sci. Technol., 58, 1125–1136 (1998).CrossRefGoogle Scholar
  38. 38.
    K. Tohgo, Y. Sugiyama, and K. Kawahara, “Ply-cracking damage and nonlinear deformation of CFRP cross-ply laminate,” JSME Int. J. Ser. A, 45, 545–552 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • J. Andersons
    • 1
  • E. Spārniņš
    • 1
  • R. Joffe
    • 2
  1. 1.Institute of Polymer MechanicsUniversity of LatviaLV-1006Latvia
  2. 2.Division of Polymer EngineeringLuleå University of TechnologyLuleåSweden

Personalised recommendations