Advertisement

Mechanics of Composite Materials

, Volume 44, Issue 5, pp 441–450 | Cite as

Estimation of laminate stiffness reduction due to cracking of a transverse ply by employing crack initiation-and propagation-based master curves

  • J. Andersons
  • E. Spārniņš
  • O. Rubenis
  • R. Joffe
Article

The applicability range of toughness-and strength-based criteria for progressive cracking of a transverse layer in a cross-ply composite laminate subjected to tensile loading is considered. Using a deterministic cracking model, approximate relations for the crack density as a function of stress are derived for initiation-and propagation-controlled types of cracking. The master-curve approach is applied to progressive cracking in glass/epoxy laminates. The accuracy of estimation of laminate stiffness reduction by using crack density master curves is evaluated.

Keywords

polymer-matrix composite laminate intralaminar cracking stiffness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Nairn, “Matrix microcracking in composites,” in: A. Kelly and C. Zweben (eds.), Comprehensive Composite Materials. Vol. 2, Pergamon (2000), pp. 403–432.Google Scholar
  2. 2.
    M. Yu. Kashtalyan and C. Soutis, “Mechanisms of internal damage and their effect on the behavior and properties of cross-ply composite laminates,” Int. Appl. Mech., 38, 641–657 (2002).CrossRefGoogle Scholar
  3. 3.
    J.-M. Berthelot, “Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading,” Appl. Mech. Rev., 56, 111–147 (2003).CrossRefGoogle Scholar
  4. 4.
    M. Kashtalyan and C. Soutis, “Analysis of composite laminates with intra-and interlaminar damage,” Progr. Aerosp. Sci., 41, 152–173 (2005).CrossRefADSGoogle Scholar
  5. 5.
    R. Joffe and J. Varna, “Analytical modeling of stiffness reduction in symmetric and balanced laminates due to cracks in 90 layers,” Compos. Sci. Technol., 59, 1641–1652 (1999).CrossRefGoogle Scholar
  6. 6.
    P. Lundmark and J. Varna, “Constitutive relationships for laminates with ply cracks in in-plane loading,” Int. J. Damage Mech., 14, 235–259 (2005).CrossRefGoogle Scholar
  7. 7.
    K. Garrett and J. Bailey, “Multiple transverse fracture in 90° cross-ply laminates of a glass fibre-reinforced polyester,” J. Mater. Sci., 12, 157–168 (1977).CrossRefADSGoogle Scholar
  8. 8.
    K. Garrett and J. Bailey, “The effect of resin failure strain on the tensile properties of glass fibre-reinforced polyester cross-ply laminates,” J. Mater. Sci., 12, 2189–2194 (1977).CrossRefADSGoogle Scholar
  9. 9.
    A. Parvizi, K. Garrett, and J. Bailey, “Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates,” J. Mater. Sci., 13, 195–201 (1978).CrossRefADSGoogle Scholar
  10. 10.
    A. Parvizi and J. Bailey, “On multiple transverse cracking in glass fiber epoxy cross-ply laminates,” J. Mater. Sci., 13, 2131–2136 (1978).CrossRefADSGoogle Scholar
  11. 11.
    V. V. Vasil'ev, A. A. Dudchenko, and A. N. Elpat'evskii, “Analysis of the tensile deformation of glass-reinforced plastics,” Polym. Mech., 6, 127–130 (1970).CrossRefGoogle Scholar
  12. 12.
    G. J. Dvorak and N. Laws, “Analysis of progressive matrix cracking in composite laminates II. First ply failure,” J. Compos. Mater., 21, 309–329 (1987).CrossRefGoogle Scholar
  13. 13.
    S. Abe, K. Kageyama, I. Ohsawa, M. Kanai, and T. Kato, “Analytical prediction and experiment of transverse lamina cracking in multidirectionally reinforced symmetric laminates,” in: Proc. of 7th Japan Int. SAMPE Symp. and Exhibit. (2001), pp. 817–820.Google Scholar
  14. 14.
    J. Andersons, R. Joffe, E. Spārniņš, and O. Rubenis, “Progressive cracking mastercurves of the transverse ply in a laminate,” Polym. Compos. (in press).Google Scholar
  15. 15.
    J. Bailey and A. Parvizi, “On fiber debonding effects and the mechanism of transverse-ply failure in cross-ply laminates of glass fibre/thermoset composites,” J. Mater. Sci., 16, 649–659 (1981).CrossRefADSGoogle Scholar
  16. 16.
    L. Boniface, P. A. Smith, M. G. Bader, and A. H. Rezaifard, “Transverse ply cracking in cross-ply CFRP laminates — initiation or propagation controlled?” J. Compos. Mater., 31, 1080–1112 (1997).Google Scholar
  17. 17.
    P. Gudmundson and J. Alpman, “Initiation and growth criteria for transverse matrix cracks in composite laminates,” Compos. Sci. Technol., 60, 185–195 (2000).CrossRefGoogle Scholar
  18. 18.
    P. Ladeveze, G. Lubineau, and D. Violeau, “A computational damage micromodel of laminated composites,” Int. J. Fract., 137, 139–150 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Andersons, R. Joffe, and E. Spārniņš, “Statistical model of the transverse ply cracking in cross-ply laminates by strength and fracture toughness based failure criteria,” Eng. Fract. Mech., 75, 2651–2665 (2008).CrossRefGoogle Scholar
  20. 20.
    N. Laws and G. J. Dvorak, “Progressive transverse cracking in composite laminates,” J. Compos. Mater., 22, 900–916 (1988).CrossRefGoogle Scholar
  21. 21.
    J. W. Lee and I. M. Daniel, “Progressive transverse cracking of cross-ply composite laminates,” J. Compos. Mater., 24, 1225–1243 (1990).CrossRefGoogle Scholar
  22. 22.
    J. A. Nairn and D. A. Mendels, “On the use of planar shear-lag methods for stress-transfer analysis of multilayered composites,” Mech. Mater., 33, 335–362 (2001).CrossRefGoogle Scholar
  23. 23.
    P. W. Manders, T.-W. Chou, F. R. Jones, and J. W. Rock, “Statistical analysis of multiple fracture in 0°/90°/0° glass fibre/epoxy resin laminates,” J. Mater. Sci., 18, 2876–2889 (1983).CrossRefADSGoogle Scholar
  24. 24.
    S. Liu and J. A. Nairn, “The formation and propagation of matrix microcracks in cross-ply laminates during static loading,” J. Reinf. Plast. Compos., 11, 158–178 (1992).CrossRefADSGoogle Scholar
  25. 25.
    O. Rubenis, E. Spārniņš, J. Andersons, and R. Joffe, “The effect of crack spacing distribution on stiffness reduction of cross-ply laminates,” Appl. Compos. Mater., 14, 59–66 (2007).CrossRefADSGoogle Scholar
  26. 26.
    D. T. G. Katerelos, J. Varna, and C. Galiotis, “Energy criterion for modelling damage evolution in cross-ply composite laminates,” Compos. Sci. Technol., 68, 2318–2324 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • J. Andersons
    • 1
  • E. Spārniņš
    • 1
  • O. Rubenis
    • 1
  • R. Joffe
    • 2
  1. 1.Institute of Polymer MechanicsUniversity of LatviaRigaLatvia
  2. 2.Division of Polymer EngineeringLuleå University of TechnologyLuleåSweden

Personalised recommendations