Advertisement

Mechanics of Composite Materials

, Volume 42, Issue 4, pp 385–392 | Cite as

Damping properties of composites based on interpenetrating polymer networks formed in the presence of compatibilizing additives

  • N. V. Babkina
  • Yu. S. Lipatov
  • T. T. Alekseeva
Article

Abstract

From the results of an analysis of the viscoelastic characteristics of semi-interpenetrating polymer networks (semi-IPNs) that are based on a crosslinked polyurethane and a linear polystyrene and are formed in the presence of compatibilizing additives (oligourethane dimethacrylate and ethylene glycol monomethacrylate), their damping ability is est mated. Such parameters as the tangent of mechanical loss (tan δ) at the glass-transition temperature, the temperature interval of effective damping (where tan δ > 0.3), and the loss area under the loss modulus vs. temperature plots are used as the criteria of damping ability. It is shown that the introduction of the compatibilizing additives to the semi-IPNs extends the interval of their effective damping temperature. By varying the composition of the material and the amount of the compatibilizing additives, it is possible to realize a purposeful selection of vibration-damping materials for solving specific technological problems.

Keywords

viscoelastic properties damping capability interpenetrating polymer networks compatibilizing additives mechanical losses loss modulus loss area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Nielsen, Mechanical Properties of Polymers and Composites, Marcel Dekker, Inc., New York (1974).Google Scholar
  2. 2.
    J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons, New York (1980).Google Scholar
  3. 3.
    V. I. Pomerantsev, G. A. Pankova, and I. E. Il’ina, “Copolymers and their role in creating new vibration-damping materials,” Plast. Massy, No. 1, 9–11 (1996).Google Scholar
  4. 4.
    S. A. Smotrova, “An analysis of vibration-damping properties of polymer materials for estimating their possible application in structures of dampers and dynamically similar models,” Plast. Massy, No. 3, 39–45 (2002).Google Scholar
  5. 5.
    Yu. S. Lipatov, Phase-Separated Interpenetrating Polymer Networks [in Russian], USChTU, Dnepropetrovsk (2001).Google Scholar
  6. 6.
    S. Yao, “Means to widen the temperature range of high damping behavior by IPN formation,” in: D. Klempner and K. C. Frisch (eds.), Advances in Interpenetrating Polymer Networks. Vol. 4, Technomic Publishing Co. Inc., Lancaster-Basel (1994), pp. 243–286.Google Scholar
  7. 7.
    Yu. S. Lipatov, V. F. Rosovitskii, P. V. Datsko, et al., “Prospects for creating vibration-damping polymer materials based on polyurethanes,” in: Experience of Application of Vibrosound-Absorbing Polymer Materials [in Russian], LDNTP, Leningrad (1986), pp. 16–20.Google Scholar
  8. 8.
    L. H. Sperling and J. J. Fay, “Factors which affect the glass transition and damping capability of polymers,” Polym. Adv. Technol., 2, 49–56 (1991).CrossRefGoogle Scholar
  9. 9.
    J. N. Foster and L. H. Sperling, “The application of bulk polymerized acrylic and methacrylic interpenetrating polymer networks to noise and vibration damping,” J. Appl. Polym. Sci., 33, 2637–2645 (1987).CrossRefGoogle Scholar
  10. 10.
    D. J. Hourston and Schafer F.-U., “Polyurethane/polystyrene one-shot interpenetrating polymer networks with good damping ability: transition broadening through crosslinking, internetwork grafting and compatibilization,” in: S. C. Kim and L. H. Sperling (eds.), IPNs Around the World, Wiley & Sons Ltd. (1997), pp. 155–171.Google Scholar
  11. 11.
    Y. C. Chern, S. M. Tseng, and K. H. Hsien, “Damping properties of interpenetrating polymer networks of polyurethane-modified epoxy and polyurethanes,” J. Appl. Polym. Sci., 74, 328–335 (1999).CrossRefGoogle Scholar
  12. 12.
    Yu. S. Lipatov, L. M. Sergeeva, L. V. Karabanova, et al., “Effect of fillers on the viscoelastic properties and compatibility of components of interpenetrating polymer networks based on polyurethane and polyesteracrylate,” Vysokomol. Soed., 30A, No. 3, 649–655 (1988).Google Scholar
  13. 13.
    Yu. S. Lipatov, T. T. Alekseeva, V. F. Rosovitskii, et al., “Filled interpenetrating networks: their formation and viscoelastic properties,” Polym. Int., 37, 97–104 (1995).CrossRefGoogle Scholar
  14. 14.
    N. V. Babkina, T. T. Alekseeva, S. I. Grishchuk, et al., “The effect of kinetics of the formation of semi-inter penetrating polymer networks on viscoelastic properties in the presence of modified aerosils,” Ukr. Khim. Zh., 68, No. 8, 107–110 (2002).Google Scholar
  15. 15.
    D. R. Paul and S. Newman (eds.), Polymer Blends, Academic Press, New York (1978).Google Scholar
  16. 16.
    M. L. Lorenzo and M. Frigione, “Compatibilization criteria and procedures for binary blends: a review,” J. Polym. Eng., 17, No. 6, 429–459 (1997).Google Scholar
  17. 17.
    Yu. S. Lipatov, T. T. Alekseeva, and N. V. Babkina, “Compatibilization in phase-separated interpenetrating polymer networks,” J. Polym. Mater., 18, No. 2, 201–210 (2001).Google Scholar
  18. 18.
    Yu. S. Lipatov, T. T. Alekseeva, L. F. Kosyanchuk, et al., “Effect of compatibilizing compounds on the viscoelastic properties of interpenetrating polymer networks,” Polymer, 40, No. 25, 7083–7087 (1999).CrossRefGoogle Scholar
  19. 19.
    M. C. O. Chang, D. A. Thomas, and L. H. Sperling, “Group contribution analysis of the damping behavior of homopolymers, statistical copolymers, and interpenetrating polymer networks based on acrylic, vinyl, and styrenicmers,” J. Polym. Sci., Pt. B, 26, 1627–1640 (1988).Google Scholar
  20. 20.
    M. C. O. Chang, D. A. Thomas, and L. H. Sperling, “Characterization of the area under loss modulus and tan*-temperature curves: acrylic polymers and their sequential interpenetrating polymer networks,” J. Appl. Polym. Sci., 34, 409–422 (1987).CrossRefGoogle Scholar
  21. 21.
    T. T. Alekseeva, S. I. Grishchuk, and Yu. S. Lipatov, “Kinetics of the formation of interpenetrat ing polymer networks (polyurethane—polystyrene) in the presence of compatibilizing additives,” Vysokomol. Soed., 47A, No. 3, 461–472 (2005).Google Scholar
  22. 22.
    T. T. Alekseeva and Yu. S. Lipatov, “Interfacial region in compatibilizing interpenetrating networks based on polyurethane and polystyrene,” Vysokomol. Soed., 47A, No. 8, 1535–1544 (2005).Google Scholar
  23. 23.
    N. V. Babkina, Yu. S. Lipatov, and T. T. Alekseeva, “Features of the viscoelastic behavior of interpenetrating polymer networks on the basis of polyurethane and polystyrene formed in the presence of compatibilizing additives,” Vysokomol. Soed., 47A, No. 12, 2118–2139 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. V. Babkina
    • 1
  • Yu. S. Lipatov
    • 1
  • T. T. Alekseeva
    • 1
  1. 1.Institute of High-Molecular ChemistryUkrainian National Academy of SciencesKievUkraine

Personalised recommendations