Bioenergy with carbon capture and storage: are short-term issues set aside?

  • Audrey LaudeEmail author
Original Article


Negative emission technologies (NETs) are a set of technologies that could retrieve greenhouse gases from the atmosphere. NETs could dramatically contribute to maintaining the temperature increase to within the limit of 2 °C or even 1.5 °C. Bioenergy with carbon capture and storage (BECCS) is one of the most studied NETs. BECCS captures carbon dioxide (CO2) emissions coming from a bioenergy plant—e.g., electricity, biofuels, and hydrogen—and stores those emissions in a geologic reservoir, typically a saline aquifer. The purpose of this article is to investigate whether a research community exists on BECCS, and whether it is aligned with research priorities. To do so, a bibliometric analysis is conducted based on author collaborations on BECCS in academic journals between 2001 and 2017. The co-authorship network shows that BECCS research is largely based on the integrated assessment model (IAM) research community. These models analyze how power and transportation systems evolve under a climate constraint in the long run, e.g., until 2100. Such a focus has advantages and drawbacks. On the one hand, it helps to build a common vision of the technology and possible roadmaps. On the other hand, I highlight that the implementation features of BECCS in the near future are insufficiently assessed, e.g., techno-economic analyses, business models, local-scale assessments, and comparison with other NETs. These issues are marginal in the network, whereas long-term analyses are at its core. Future research programmes should better include them to avoid a considerable disappointment about the real potential of BECCS.


Bioenergy with carbon capture and storage BECCS Negative emission technologies Bioenergy Co-authorship network 


Supplementary material

11027_2019_9856_MOESM1_ESM.pdf (117 kb)
ESM 1 (PDF 117 kb)


  1. Akgul O, Mac Dowell N, Papageorgiou LG, Shah N (2014) A mixed integer nonlinear programming (MINLP) supply chain optimization framework for carbon negative electricity generation using biomass to energy with CCS (BECCS) in the UK. Int J Greenhouse Gas Control 28:189–202CrossRefGoogle Scholar
  2. Al-Ansari T, Korre A, Shah N (2014) Integrated modelling of the energy, water and food nexus to enhance the environmental performance of food production systems. In: Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014). American center for life cycle assessment, San Francisco, California, USA, pp 1–10Google Scholar
  3. Anderegg WRL, Prall JW, Harold J, Schneider SH (2010) Expert credibility in climate change. Proc Natl Acad Sci 107:12107–12109CrossRefGoogle Scholar
  4. Azar C, Lindgren K, Andersson BA (2003) Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy 31:961–976CrossRefGoogle Scholar
  5. Azar C, Lindgren K, Larson E, Möllersten K (2006) Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim Chang 74:47–79CrossRefGoogle Scholar
  6. Azar C, Lindgren K, Obersteiner M, Riahi K, van Vuuren DP, den Elzen KMGJ, Möllersten K, Larson ED (2010) The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Clim Chang 100:195–202CrossRefGoogle Scholar
  7. Bellamy R, Chilvers J, Vaughan NE, Lenton TM (2012) A review of climate geoengineering appraisals. Wiley Interdiscip Rev Clim Chang 3:597–615CrossRefGoogle Scholar
  8. Belter CW, Seidel DJ (2013) A bibliometric analysis of climate engineering research. Wiley Interdiscip. Rev Clim Change 4:417–427Google Scholar
  9. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment.
  10. Boucher O, Forster PM, Gruber N, Ha-Duong M, Lawrence MG, Lenton TM, Maas A, Vaughan NE (2014) Rethinking climate engineering categorization in the context of climate change mitigation and adaptation. Wiley Interdiscip Rev Clim Chang 5:23–35CrossRefGoogle Scholar
  11. Faaij A (2006) Modern biomass conversion technologies. Mitig Adapt Strateg Glob Chang 11:343–375CrossRefGoogle Scholar
  12. Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM, Ciais P, Jackson RB, Jones CD, Kraxner F, Nakicenovic N, Le Quéré C, Raupach MR, Sharifi A, Smith P, Yamagata Y (2014) Betting on negative emissions. Nat Clim Chang 4:850–853CrossRefGoogle Scholar
  13. Fuss S, Jones CD, Kraxner F, Peters GP, Smith P, Tavoni M, van Vuuren DP, Canadell JG, Jackson RB, Milne J, Moreira JR, Nakicenovic N, Sharifi A, Yamagata Y (2016) Research priorities for negative emissions. Environ Res Lett 11:115007CrossRefGoogle Scholar
  14. Gibon T, Hertwich EG, Arvesen A, Singh B, Verones F (2017) Health benefits, ecological threats of low-carbon electricity. Environ Res Lett 12:034023CrossRefGoogle Scholar
  15. Goyal S, van der Leij MJ, Moraga-González JL (2006) Economics: an emerging small world. J Polit Econ 114:403–412CrossRefGoogle Scholar
  16. Greene CH, Huntley ME, Archibald I, Gerber LN, Sills DL, Granados J, Beal CM, Walsh MJ (2017) Geoengineering, marine microalgae, and climate stabilization in the 21st century. Earths Future 5:278–284CrossRefGoogle Scholar
  17. Hailey AK, Meerman JC, Larson ED, Loo Y-L (2016) Low-carbon “drop-in replacement” transportation fuels from non-food biomass and natural gas. Appl Energy 183:1722–1730CrossRefGoogle Scholar
  18. Haunschild R, Bornmann L, Marx W (2016) Climate change research in view of bibliometrics. PLoS One 11:e0160393CrossRefGoogle Scholar
  19. Herzog H (2016) Lessons learned from CCS demonstration and large pilot projects, MIT energy initiative working paper MITEI-WP-2016-06Google Scholar
  20. IEA (2013) Technology roadmap—carbon capture and storage. OECD/IEA, ParisGoogle Scholar
  21. IEA (2016) Twenty years of carbon capture storage. OECD/IEA, ParisGoogle Scholar
  22. IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  23. Jackson RB, Canadell JG, Fuss S, Milne J, Nakicenovic N, Tavoni M (2017) Focus on negative emissions. Environ Res Lett 12:110201CrossRefGoogle Scholar
  24. Jankó F, Móricz N, Papp Vancsó J (2014) Reviewing the climate change reviewers: exploring controversy through report references and citations. Geoforum 56:17–34CrossRefGoogle Scholar
  25. Khorshidi Z, Ho M, Wiley D (2015) Techno-economic evaluation of using biomass-fired auxiliary units for supplying energy requirements of CO2 capture in coal-fired power plants. Int J Greenhouse Gas Control 32:24–36CrossRefGoogle Scholar
  26. Kraxner F, Aoki K, Leduc S, Kindermann G, Fuss S, Yang J, Yamagata Y, Tak K-I, Obersteiner M (2014a) BECCS in South Korea—analyzing the negative emissions potential of bioenergy as a mitigation tool. Renew Energy 61:102–108CrossRefGoogle Scholar
  27. Kraxner F, Leduc S, Fuss S, Aoki K, Kindermann G, Yamagata Y (2014b) Energy resilient solutions for Japan—a BECCS case study. Energy Procedia 61:2791–2796CrossRefGoogle Scholar
  28. Kriegler E, Mouratiadou I, Luderer G, Edmonds J, Edenhofer O (2016) Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection. Clim Chang 136:1–6CrossRefGoogle Scholar
  29. Kriegler E, Weyant JP, Blanford GJ, Krey V, Clarke L, Edmonds J, Fawcett A, Luderer G, Riahi K, Richels R, Rose SK, Tavoni M, van Vuuren DP (2014) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim Chang 123:353–367CrossRefGoogle Scholar
  30. Kumar S (2015) Co-authorship networks: a review of the literature. Aslib J Inf Manag 67:55–73CrossRefGoogle Scholar
  31. Li J, Wang M-H, Ho Y-S (2011) Trends in research on global climate change: a science citation index expanded-based analysis. Glob Planet Chang 77:13–20CrossRefGoogle Scholar
  32. Linnér B-O, Wibeck V (2015) Dual high-stake emerging technologies: a review of the climate engineering research literature. Wiley Interdiscip Rev Clim Chang 6:255–268CrossRefGoogle Scholar
  33. Liu G, Williams RH, Larson ED, Kreutz TG (2011) Design/economics of low-carbon power generation from natural gas and biomass with synthetic fuels co-production. Energy Procedia 4:1989–1996CrossRefGoogle Scholar
  34. Lomax G, Lenton TM, Adeosun A, Workman M (2015) Investing in negative emissions. Nat Clim Chang 5:498–500CrossRefGoogle Scholar
  35. Lotze-Campen H, von Lampe M, Kyle P, Fujimori S, Havlik P, van Meijl H, Hasegawa T, Popp A, Schmitz C, Tabeau A, Valin H, Willenbockel D, Wise M (2014) Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric Econ 45:103–116CrossRefGoogle Scholar
  36. Luckow P, Wise MA, Dooley JJ, Kim SH (2010) Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios. Int J Greenhouse Gas Control 4:865–877CrossRefGoogle Scholar
  37. Mathews JA (2008) Carbon-negative biofuels. Energy Policy 36:940–945CrossRefGoogle Scholar
  38. Melin G, Persson O (1996) Studying research collaboration using co-authorships. Scientometrics 36:363–377CrossRefGoogle Scholar
  39. Milgram S (1967) The small-world problem. Psychol Today 1:61–67Google Scholar
  40. Minx JC, Lamb WF, Callaghan MW, Bornmann L, Fuss S (2017) Fast growing research on negative emissions. Environ Res Lett 12:035007CrossRefGoogle Scholar
  41. Möllersten K, Yan J (2001) Economic evaluation of biomass-based energy systems with CO2 capture and sequestration in Kraft pulp mills—the influence of the price of CO2 emission quota world. Resour Rev 13:509–525Google Scholar
  42. Möllersten K, Yan JR, Moreira J (2003) Potential market niches for biomass energy with CO2 capture and storage—opportunities for energy supply with negative CO2 emissions. Biomass Bioenergy 25:273–285CrossRefGoogle Scholar
  43. Newman MEJ (2004) Co-authorship networks and patterns of scientific collaboration. Proc Natl Acad Sci 101:5200–5205CrossRefGoogle Scholar
  44. Obersteiner M, Azar C, Kossmeier S, Mechler R, Moellersten K, Nilsson S, Read P, Yamagata Y, Yan J (2001) Managing climate risk. Science 294:786–787CrossRefGoogle Scholar
  45. Oldham P, Szerszynski B, Stilgoe J, Brown C, Eacott B, Yuille A (2014) Mapping the landscape of climate engineering. Philos Trans R Soc A Math Phys Eng Sci 372:20140065–20140065CrossRefGoogle Scholar
  46. Oreggioni GD, Singh B, Cherubini F, Guest G, Lausselet C, Luberti M, Ahn H, Strømman AH (2017) Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. Int J Greenhouse Gas Control 57:162–172CrossRefGoogle Scholar
  47. Pang M, Zhang L, Liang S, Liu G, Wang C, Hao Y, Wang Y, Xu M (2017) Trade-off between carbon reduction benefits and ecological costs of biomass-based power plants with carbon capture and storage (CCS) in China. J Clean Prod 144:279–286CrossRefGoogle Scholar
  48. Pasgaard M, Strange N (2013) A quantitative analysis of the causes of the global climate change research distribution. Glob Environ Chang 23:1684–1693CrossRefGoogle Scholar
  49. Popp A, Dietrich JP, Lotze-Campen H, Klein D, Bauer N, Krause M, Beringer T, Gerten D, Edenhofer O (2011) The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ Res Lett 6:034017CrossRefGoogle Scholar
  50. Porter RTJ, Fairweather M, Pourkashanian M, Woolley RM (2015) The range and level of impurities in CO2 streams from different carbon capture sources. Int J Greenhouse Gas Control 36:161–174CrossRefGoogle Scholar
  51. Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, KC S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168CrossRefGoogle Scholar
  52. Rochedo P, Costa I, Império C, Hoffmann B, Merschmann P, Oliveira C, Szklo S, Schaeffer R (2016) Carbon capture potential and cost in Brazil. J Clean Prod 131:280–295CrossRefGoogle Scholar
  53. Sharifzadeh M, Wang L, Shah N (2015) Integrated biorefineries: CO2 utilization for maximum biomass conversion. Renew Sust Energ Rev 47:151–161CrossRefGoogle Scholar
  54. Sithole H, Cockerill TT, Hughes KJ, Ingham DB, Ma L, Porter RTJ, Pourkashanian M (2016) Developing an optimal electricity generation mix for the UK 2050 future. Energy 100:363–373CrossRefGoogle Scholar
  55. Stanhill G (2001) The growth of climate change science: a scientometric study. Clim Chang 48:515–524CrossRefGoogle Scholar
  56. Tavoni M, Tol RSJ (2010) Counting only the hits? The risk of underestimating the costs of stringent climate policy. Clim Chang 100:769–778CrossRefGoogle Scholar
  57. Tsiropoulos I, Hoefnagels R, van den Broek M, Patel MK, Faaij APC (2017) The role of bioenergy and biochemicals in CO2 mitigation through the energy system—a scenario analysis for the Netherlands. GCB Bioenergy 9:1489–1509CrossRefGoogle Scholar
  58. Uddin SN, Barreto L (2007) Biomass-fired cogeneration systems with CO2 capture and storage. Renew Energy 32:1006–1019CrossRefGoogle Scholar
  59. van der Zwaan B, Kober T, Calderon S et al (2014) Energy technology roll-out for climate change mitigation: a multi-model study for Latin America. Energy Econ 56:526–542CrossRefGoogle Scholar
  60. van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B (2013) The role of negative CO2 emissions for reaching 2 °C—insights from integrated assessment modelling. Clim Chang 118:15–27CrossRefGoogle Scholar
  61. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011a) Representative concentration pathways: an overview. Clim Chang 109:5–31CrossRefGoogle Scholar
  62. van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deetman S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, Oostenrijk R, van Ruijven B (2011b) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim Chang 109:95–116CrossRefGoogle Scholar
  63. Vaughan NE, Gough C (2016) Expert assessment concludes negative emissions scenarios may not deliver. Environ Res Lett 11:095003CrossRefGoogle Scholar
  64. Wallquist L, Seigo SLO, Visschers VHM, Siegrist M (2012) Public acceptance of CCS system elements: a conjoint measurement. Int J Greenhouse Gas Control 6:77–83CrossRefGoogle Scholar
  65. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefGoogle Scholar
  66. Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire REGARDSUniversité de Reims Champagne-ArdenneReimsFrance

Personalised recommendations