Advertisement

Carbon sequestration capacity and productivity responses of Mediterranean olive groves under future climates and management options

  • L. Brilli
  • E. Lugato
  • M. Moriondo
  • B. Gioli
  • P. Toscano
  • A. Zaldei
  • L. Leolini
  • C. Cantini
  • G. Caruso
  • R. Gucci
  • P. Merante
  • C. Dibari
  • R. Ferrise
  • M. Bindi
  • S. Costafreda-Aumedes
Original Article

Abstract

The need to reduce the expected impact of climate change, finding sustainable ways to maintain or increase the carbon (C) sequestration capacity and productivity of agricultural systems, is one of the most important challenges of the twenty-first century. Olive (Olea europaea L.) groves can play a fundamental role due to their potential to sequester C in soil and woody compartments, associated with widespread cultivation in the Mediterranean basin. The implementation of field experiments to assess olive grove responses under different conditions, complemented by simulation models, can be a powerful approach to explore future land-atmosphere C feedbacks. The DayCent biogeochemical model was calibrated and validated against observed net ecosystem exchange, net primary productivity, aboveground biomass, leaf area index, and yield in two Italian olive groves. In addition, potential changes in C-sequestration capacity and productivity were assessed under two types of management (extensive and intensive), 35 climate change scenarios (ΔT-temperature from + 0 °C to + 3 °C; ΔP-precipitation from 0.0 to − 20%), and six areas across the Mediterranean basin (Brindisi, Coimbra, Crete, Cordoba, Florence, and Montpellier). The results indicated that (i) the DayCent model, properly calibrated, can be used to quantify olive grove daily net ecosystem exchange and net primary production dynamics; (ii) a decrease in net ecosystem exchange and net primary production is predicted under both types of management by approaching the most extreme climate conditions (ΔT = + 3 °C; ΔP = − 20%), especially in dry and warm areas; (iii) irrigation can compensate for net ecosystem exchange and net primary production losses in almost all areas, while ecophysiological air temperature thresholds determine the magnitude and sign of C-uptake; (iv) future warming is expected to modify the seasonal net ecosystem exchange and net primary production pattern, with higher photosynthetic activity in winter and a prolonged period of photosynthesis inhibition during summer compared to the baseline; (v) a substantial decrease in mitigation capacity and productivity of extensively managed olive groves is expected to accelerate between + 1.5 and + 2 °C warming compared to the current period, across all Mediterranean areas; (vi) adaptation measures aimed at increasing soil water content or evapotranspiration reduction should be considered the mostly suitable for limiting the decrease of both production and mitigation capacity in the next decades.

Keywords

Olea europaea DayCent Climate change Mitigation Productivity 

Notes

Funding information

LIFE project “ADAPT2CLIMA” (Adaptation to Climate change Impacts on the Mediterranean islands’ Agriculture), no. LIFE14 CCA/GR/000928.

Supplementary material

11027_2018_9824_MOESM1_ESM.docx (57 kb)
ESM 1 (DOCX 56 kb)

References

  1. Abdalla M, Jones M, Yeluripati J, Smith P, Burke J, Williams M (2010) Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atm Env 44:2961–2970.  https://doi.org/10.1016/j.atmosenv.2010.05.018 CrossRefGoogle Scholar
  2. Alvaro-Fuentes J, Easter M, Paustian K (2012) Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric Ecosyst Environ 155:87–94.  https://doi.org/10.1016/j.agee.2012.04.001 CrossRefGoogle Scholar
  3. Álvaro-Fuentes J, Arrúe A, Bielsa C, Cantero-Martínez D, Plaza-Bonilla PK (2017) Simulating climate change and land use effects on soil nitrous oxide emissions in Mediterranean conditions using the Daycent model. Agric Ecosyst Environ 238:78–88.  https://doi.org/10.1016/j.agee.2016.07.017 CrossRefGoogle Scholar
  4. Andersen L, Kühn BF, Bertelsen M, Bruus M, Larsen SE, Strandberg M (2013) Alternatives to herbicides in an apple orchard, effects on yield, , earthworms and plant diversity. Agric Ecosyst Environ 172:1–5.  https://doi.org/10.1016/j.agee.2013.04.004 CrossRefGoogle Scholar
  5. Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351.  https://doi.org/10.1016/S1360-1385(03)00136-5 CrossRefGoogle Scholar
  6. Baldocchi D, Valentini R, Running S (1996) Strategies for measuring and modeling carbon dioxide and water vapour fluxes over terrestrial ecosystem. Glob Chang Biol 2:159–168.  https://doi.org/10.1111/j.1365-2486.1996.tb00069.x CrossRefGoogle Scholar
  7. Battaglia M, Beadle C, Loughhead S (1996) Photosynthetic temperature responses of Eucalyptus globosus and Eucalyptus nitens. Tree Physiol 16:81–89 PMID: 14871750CrossRefGoogle Scholar
  8. Bongi G, Long SP (1987) Light dependent damage to photosynthesis in olive trees during chilling and high temperatures stress. Plant Cell Environ 14:127–132.  https://doi.org/10.1111/1365-3040.ep11602267 Google Scholar
  9. Brilli L, Chiesi M, Maselli F, Moriondo M, Gioli B, Toscano P, Zaldei A, Bindi M (2013) Simulation of olive grove gross primary production by the combination of ground and multi-sensor satellite data. Int J Appl Earth Obs 23:29–36.  https://doi.org/10.1016/j.jag.2012.11.006 CrossRefGoogle Scholar
  10. Brilli L, Gioli B, Toscano P, Moriondo M, Zaldei A, Cantini C, Ferrise R, Bindi M (2016) Rainfall regimes control C-exchange of Mediterranean olive orchard. Agric Ecosyst Environ 233:147–157.  https://doi.org/10.1016/j.agee.2016.09.006 CrossRefGoogle Scholar
  11. Brilli L, Bechini L, Bindi M, Carozzi M, Cavalli D, Conant R, Dorich CD, Doro L, Ehrhardt F, Farina R, Ferrise R, Fitton N, Francaviglia R, Grace P, Iocola I, Klumpp K, Léonard J, Martin R, Massad RS, Recous S, Seddaiu G, Sharp J, Smith P, Smith WN, Soussana JF, Bellocchi G (2017) Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Sci Total Environ 598:445–470.  https://doi.org/10.1016/j.scitotenv.2017.03.208 CrossRefGoogle Scholar
  12. Camarero JJ, Olano JM, Alfaro SJA, Fernández-Marínc B, Becerril JM, García-Plazaola JI (2012) Photoprotection mechanisms in Quercus ilex under contrasting climatic conditions. Flora 207:557–564.  https://doi.org/10.1016/j.flora.2012.06.003 CrossRefGoogle Scholar
  13. Carr MKV (2014) Advances in irrigation agronomy: fruit crops. Cambridge University Press, New York, p 350 ISBN: 9781107037359 ISBN-10: 1107037352CrossRefGoogle Scholar
  14. Caruso G, Rapoport HF, Gucci R (2013) Long-term evaluation of yield components of young olive trees during the onset of fruit production under different irrigation regimes. Irrig Sci 31:37–47.  https://doi.org/10.1007/s00271-011-0286-0 CrossRefGoogle Scholar
  15. Caruso G, Gucci R, Urbani S, Esposto S, Taticchi A, Di Maio I, Selvaggini R, Servili M (2014) Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cv. Frantoio. Agric Water Manag 134:94–103.  https://doi.org/10.1016/j.agwat.2013.12.003 CrossRefGoogle Scholar
  16. Chamizo S, Serrano-Ortiz P, Lopez-Ballesteros A, Sanchez-Canete EP, Vicente Vicente JL, Kowalsky AS (2017) Net ecosystem CO2 exchange in an irrigated orchard of SE Spain: influence of weed cover. Agric Ecosyst Environ 239:51–64.  https://doi.org/10.1016/j.agee.2017.01.016 CrossRefGoogle Scholar
  17. Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosyntesis and growth. Ann Bot 89:907–916.  https://doi.org/10.1093/aob/mcf105 CrossRefGoogle Scholar
  18. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: F T, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  19. Dag A, Harlev G, Lavee S, Zipori I, Kerem Z (2014) Optimizing olive harvest time under hot climatic conditions of Jordan Valley, Israel. Eur J Lipid Sci Technol 116:169–176.  https://doi.org/10.1002/ejlt.201300211 CrossRefGoogle Scholar
  20. de Gryze S, Wolf A, Kaffka SR, Mitchell J, Rolston DE, Temple SR, Lee J, Six J (2010) Simulating greenhouse gas budgets of four California cropping systems under conventional and alternative management. Ecol Appl 20:1805–1819.  https://doi.org/10.1890/09-0772.1 CrossRefGoogle Scholar
  21. del Grosso SJ, Parton WJ, Mosier AR, Hartman MD, Brenner J, Ojima DS, Schimel DS (2001a) Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. In: Schaffer M, Ma L, Hansen S (eds) Modeling carbon and nitrogen dynamics for soil management. CRC press. Florida, Boca Raton, pp 303–332Google Scholar
  22. del Grosso SJ, Parton WJ, Mosier AR, Hartman MD, Keough CA, Peterson GA, Ojima DS, Schimel DS (2001b) Simulated effects of land use, soil texture, and precipitation on N gas emissions using DAYCENT. In: Follett RF, F R, Hatfield JL (eds) Nitrogen in the environment: sources, problems, and management. Elsevier Science Publishers, Amsterdam, pp 413–431CrossRefGoogle Scholar
  23. del Grosso SJ, Mosier AR, Parton WJ, Ojima DS (2005) DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res 83:9–24.  https://doi.org/10.1016/j.still.2005.02.007 CrossRefGoogle Scholar
  24. del Grosso SJ, Parton WJ, Keough C, Reyes-Fox MA (2011). Special features of the DayCent modeling package and additional procedures for parameterization, calibration, validation, and applications. Soil Science Society of America Special Publication Book Chapter pp 155–176Google Scholar
  25. Ehrhardt F, Soussana J, Bellocchi G, Grace P, McAuliffe R, Recous S, Sandor R, Smith P, Snow V, Migliorati MD, Basso B, Bhatia A, Brilli L, Doltra J, Dorich CD, Doro L, Fitton N, Giacomini SJ, Grant B, Harrison MT, Jones SK, Kirschbaum MU, Klumpp K, Laville P, Leonard J, Liebig MA, Lieffering M, Martin R, Massad R, Meier E, Merbold L, Moore AD, Myrgiotis V, Newton P, Pattey E, Rolinski S, Sharp J, Smith WN, Wu L, Zhang Q (2018) Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions. Glob Chang Biol 24:603–616.  https://doi.org/10.1111/gcb.13965 CrossRefGoogle Scholar
  26. FAO (2015). AQUASTAT Database. http://www.fao.org/land-water/en/. Accessed 1 May 2015
  27. Faurès JM, Hoogeveen J, Bruinsma J (2002) The FAO irrigated area forecast for 2030. Food and Agric. Organ, RomeGoogle Scholar
  28. Fereres E, Ruz C, Castro J, Gómez JA, Pastor M (1996). Recuperación del olivo después de una sequía extrema. Proceedings of the XIV. Congreso Nacional de Riegos, Aguadulce (Almería), 11–13 June, 1996, pp. 89–93Google Scholar
  29. Fiedler SR, Leinweber P, Jurasinski G, Eckhardt KU, Glatzel S (2016) Tillage-induced short-term soil organic matter turnover and respiration. Soil 2:475–486.  https://doi.org/10.5194/soil-2-475-2016 CrossRefGoogle Scholar
  30. Fronzek S, Carter TR, Raisanen J, Ruokolainen L, Luoto M (2010) Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia. Clim Chang 99:515–534.  https://doi.org/10.1007/s10584-009-9679-y CrossRefGoogle Scholar
  31. Gargouri K, Rigane H, Arous I, Touil F (2013) Evolution of soil organic carbon in an olive orchard under arid climate. Sci Hortic 152:102–108.  https://doi.org/10.1016/j.scienta.2012.11.025 CrossRefGoogle Scholar
  32. Garrido A, Llamas MR, Varela-Ortega C, Novo P, Rodríguez Casado R, Aldaya MM (2010). Water footprint and virtual water trade in Spain. Policy implications. Fundación Marcelino Botín. Springer. p 153Google Scholar
  33. Ghannoum O, Way DA (2011) On the role of ecological adaptation and geographic distribution in the response of trees to climate change. Tree Physiol 31:1273–1276.  https://doi.org/10.1093/treephys/tpr115 CrossRefGoogle Scholar
  34. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104.  https://doi.org/10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  35. Graux AI, Soussana JF, Brisson N, Hill D, Lardy R (2009) Modelling climate change impacts on grasslands and possible adaptations of livestock systems. Climate Change: Global Risks, Challenges and Decisions IOP Conf. Series: Earth Environ Sci 6:242046.  https://doi.org/10.1088/1755-1307/6/4/242046 Google Scholar
  36. Graux AI, Bellocchi G, Lardy R, Soussana JF (2013) Ensemble modelling of climate change risks and opportunities for managed grasslands in France. Agric For Meteorol 170:114–131.  https://doi.org/10.1016/j.agrformet.2012.06.010 CrossRefGoogle Scholar
  37. Gucci R, Caruso G (2011) Environmental stress and sustainable olive growing. Proceeding of the XXVII international horticultural congress on science and horticulture for people, Lisboa 2010. Acta Hortic 924:19–30CrossRefGoogle Scholar
  38. Gucci R, Caruso G, Bertolla C, Urbani S, Taticchi A, Esposto S, Servili M, Sifola MI, Pellegrini S, Pagliai M, Vignozzi N (2012) Changes in soil properties and tree performance induced by soil management in a high-density olive orchard. Eur J Agron 41:18–27.  https://doi.org/10.1016/j.eja.2012.03.002 CrossRefGoogle Scholar
  39. IPCC (2013) Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Qin TF,D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) . Cambridge University Press, Cambridge, UK and New York, USA, p 1535Google Scholar
  40. Jia X, Zha TS, Wu B, Zhang YQ, Gong JN, Qin SG, Chen GP, Kellomäki S, Peltola H (2014) Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in Northwest China. Biogeosci Discuss 11:5089–5122.  https://doi.org/10.5194/bgd-11-5089-2014 CrossRefGoogle Scholar
  41. Krauss M, Ruser R, Müller T, Hansen S, Mäder P, Gattinger A (2017) Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley - winter wheat cropping sequence. Agric Ecosyst Environ 239:324–333.  https://doi.org/10.1016/j.agee.2017.01.029 CrossRefGoogle Scholar
  42. Kwon H, Pendall E, Ewers BE, Cleary M, Naithani K (2008) Spring drought regulates summer net ecosystem CO2 exchange in a sagebrush-steppe ecosystem. Agr For Met 148:381–391.  https://doi.org/10.1016/j.agrformet.2007.09.010 CrossRefGoogle Scholar
  43. Lenth RV (2009) Response-surface methods in R, using rsm. J Stat Softw 32:1–17.  https://doi.org/10.18637/jss.v032.i07 CrossRefGoogle Scholar
  44. Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos Trans R Soc B 363:1811–1817.  https://doi.org/10.1098/rstb.2007.0032 CrossRefGoogle Scholar
  45. Lugato E, Leip A, Jones A (2018) Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat Clim Chang 8:219–223 https://www.nature.com/articles/s41558-018-0087-z CrossRefGoogle Scholar
  46. Lugato E, Panagos P, Bampa F, Jones A, Montanarella L (2014) A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Glob Chang Biol 20:313–326.  https://doi.org/10.1111/gcb.12292 CrossRefGoogle Scholar
  47. Lugato E, Zuliani M, Alberti G, Delle Vedove G, Gioli B, Miglietta F, Peressotti A (2010) Application of DNDC biogeochemistry model to estimate greenhouse gas emissions from Italian agricultural areas at high spatial resolution. Agric Ecosyst Environ 139:546–556.  https://doi.org/10.1016/j.agee.2010.09.015 CrossRefGoogle Scholar
  48. Marra FP (2009) Ambiente di Coltivazione. In: Pisante M, Inglese P, Lercker G (eds) L'Ulivo e l'Olio. Città di Castello (PG). ART S.p.A. Ed. Script, Bologna, pp 350–357Google Scholar
  49. Maselli F, Chiesi M, Brill L, Moriondo M (2012) Simulation of olive yield in Tuscany through the integration of remote sensing and ground data. Ecol Model 244:1–12.  https://doi.org/10.1016/j.ecolmodel.2012.06.028 CrossRefGoogle Scholar
  50. Medrano H, Flexas J, Galmés J (2009) Variability in water use efficiency at the leaf level among Mediterranean plants with different growth forms. Plant Soil 317:17–29.  https://doi.org/10.1007/s11104-008-9785-z CrossRefGoogle Scholar
  51. Mohamad RS, Bteich MR, Cardone G, Marchini A (2013) Economic analysis in organic olive farms: the case of the ancient olive trees in the rural parkland in Apulia. New Medit 12:55–61Google Scholar
  52. Montanaro G, Nuzzo V, Xiloyannis C, Dichio B (2018) Climate change mitigation and adaptation in agriculture: the case of olive. J Water Clim Chang.  https://doi.org/10.2166/wcc.2018.023
  53. Moriondo M, Ferrise R, Trombi G, Brilli L, Dibari C, Bindi M (2015) Modelling olive trees and grapevines in a changing climate. Environ Model Softw 72:387–401.  https://doi.org/10.1016/j.envsoft.2014.12.016 CrossRefGoogle Scholar
  54. Nardino M, Pernice F, Rossi F, Georgiadis T, Facini O, Motisi A, Drago A (2013) Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica 51:63–74.  https://doi.org/10.1007/s11099-012-0079-6 CrossRefGoogle Scholar
  55. Necpálová M, Anex RP, Fienen MN, del Grosso SJ, Castellano MJ, Sawyer JE, Iqbal J, Pantoja JL, Barker DW (2015) Understanding the DayCent model: calibration, sensitivity, and identifiability through inverse modeling. Environ Model Softw 66:110–130.  https://doi.org/10.1016/j.envsoft.2014.12.011 CrossRefGoogle Scholar
  56. Nieto OM, Castro J, Fernández E, Smith P (2010) Simulation of soil organic carbon stocks in a Mediterranean olive grove under different soil-management systems using the RothC model. Soil Use Manag 26:118–125.  https://doi.org/10.1111/j.1475-2743.2010.00265.x CrossRefGoogle Scholar
  57. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51.  https://doi.org/10.1146/annurev.es.04.110173.000325 CrossRefGoogle Scholar
  58. Ogaya R, Penuelas J (2003) Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ Exp Bot 50:137–148.  https://doi.org/10.1016/S0098-8472(03)00019-4 CrossRefGoogle Scholar
  59. Oxfam (2010) The road to olive farming: challenges to developing the economy of olive oil in the West Bank. ISBN: 9781848147577. Available at: https://www.oxfam.org/sites/www.oxfam.org/files/the-road-to-olive-farming_0.pdf
  60. Ozdemir Y (2016) Effects of climate change on olive cultivation and table olive and olive oil quality. Scientific Papers, Horticulture Vol. LX, 2016. ISSN 2286–1580, ISSN-L 2285–5653Google Scholar
  61. Parton WJ, Schimel DS, Ojima D, Cole CV (1994) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Bryant RB, Arnoldm RW (eds) Quantitative Modeling of Soil Forming Processes. Soil Science Society of America, Madison, pp 147–167.  https://doi.org/10.2136/sssaspecpub39.c9 Google Scholar
  62. Parton WJ, Hartman M, Ojima D, Schimel D (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Chang 19:35–48.  https://doi.org/10.1016/S0921-8181(98)00040-X CrossRefGoogle Scholar
  63. Pérez-Priego O, Testi L, Kowalski AS, Villalobos FJ, Orgaz F (2014) Aboveground respiratory CO2 effluxes from olive trees (Olea europaea L.). Agrofor Syst 88:245–255.  https://doi.org/10.1007/s10457-014-9672-y CrossRefGoogle Scholar
  64. Pirttioja N, Carter T, Fronzek S, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao F, Trnka M, Acutis M, Asseng S, Baranowski P, Basso B, Bodin P, Buis S, Cammarano D, Deligios P, Destain M, Dumont B, Ewert F, Ferrise R, François L, Gaiser T, Hlavinka P, Jacquemin I, Kersebaum K, Kollas C, Krzyszczak J, Lorite I, Minet J, Minguez M, Montesino M, Moriondo M, Müller C, Nendel C, Öztürk I, Perego A, Rodríguez A, Ruane A, Ruget F, Sanna M, Semenov M, Slawinski C, Stratonovitch P, Supit I, Waha K, Wang E, Wu L, Zhao Z, Rötter R (2015) Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Clim Res 65:87–105.  https://doi.org/10.3354/cr01322 CrossRefGoogle Scholar
  65. Pisante M, Stagnari F, Acutis M, Bindi M, Brilli L, Di Stefano V, Carozzi M (2015) Conservation agriculture and climate change. In Conservation Agriculture. In: Farooq M, Siddique K (eds). Springer, pp 579–620.  https://doi.org/10.1007/978-3-319-11620-4_22
  66. Ponti L, Gutierrez AP, Ruti PM, Dell’Aquila A (2014) Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. PNAS 111:5598–5603.  https://doi.org/10.1073/pnas.1314437111 CrossRefGoogle Scholar
  67. Prabhakaran Nair KP (2010) The agronomy and economy of important tree crops of the developing world. Elsevier, India, p 368 ISBN: 978-0-12-384677-8Google Scholar
  68. Rafique R, Fienen MN, Parkin TB, Anex RP (2013) Nitrous oxide emissions from cropland: a procedure for calibrating the DayCent biogeochemical model using inverse modelling. Water Air Soil Pollut 224:1677.  https://doi.org/10.1007/s11270-013-1677-z CrossRefGoogle Scholar
  69. Rallo G, Provenzano G (2013) Modelling eco-physiological response of table olive trees (Olea europaea L.) to soil water deficit conditions. Agr Water Manag 120:79–88.  https://doi.org/10.1016/j.agwat.2012.10.005 CrossRefGoogle Scholar
  70. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Dalibor J, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyer T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz MJ, Tenhunen J, Seufert G, Vaccari F, Vesala T, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1429.  https://doi.org/10.1111/j.1365-2486.2005.001002.x CrossRefGoogle Scholar
  71. Ruiz-Ramos M, Ferrise R, Rodríguez A, Lorite I, Bindi M, Carter TR, Fronzek S, Palosuo T, Pirttioja N, Baranowski P, Buis S, Cammarano D, Chen Y, Dumont B, Ewert F, Gaiser T, Hlavinka P, Hoffmann H, Höhn JG, Jurecka F, Kersebaum KC, Krzyszczak J, Lana M, Mechiche-Alami A, Minet J, Montesino M, Nendel C, Porter JR, Ruget F, Semenov M, Steinmetz Z, Stratonovitch P, Supit I, Tao F, Trnka M, de Wit A, Rötter RP (2018) Adaptation response surfaces for local management of wheat under perturbed climate and CO2 concentration in a Mediterranean environment. Agric Syst 159:260–274.  https://doi.org/10.1016/j.agsy.2017.01.009 CrossRefGoogle Scholar
  72. Salmoral G, Aldaya MM, Chico D, Garrido A, Llama MR (2011) The water footprint of olives and olive oil in Spain. Span J Agric Res 9:1089–1104.  https://doi.org/10.5424/sjar/20110904-035-11 CrossRefGoogle Scholar
  73. Sándor R, Barcza Z, Hidy D, Lellei-Kovács E, Ma S, Bellocchi G (2016) Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models. Agric Ecosyst Environ 215:1–19.  https://doi.org/10.1016/j.agee.2015.09.001 CrossRefGoogle Scholar
  74. Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Trees and forest functioning in response to global warming. New Phytol 149:369–400.  https://doi.org/10.1046/j.1469-8137.2001.00057.x CrossRefGoogle Scholar
  75. Scandellari F, Caruso G, Liguori G, Meggio F, Palese AM, Zanotelli DG, Celano G, Gucci R, Inglese P, Pitacco A, Tagliavini M (2016) A survey of carbon sequestration potential of orchards and vineyards in Italy. Eur J Hort Sci 81:106–114.  https://doi.org/10.17660/eJHS.2016/81.2.4 CrossRefGoogle Scholar
  76. Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Climate Change 35:397–414.  https://doi.org/10.1023/A:1005342632279 CrossRefGoogle Scholar
  77. Semenov M, Stratonovitch P (2010) Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim Res 41:1–14.  https://doi.org/10.3354/cr00836 CrossRefGoogle Scholar
  78. Smith P, Olesen JE (2010) Synergies between the mitigation of, and adaptation to, climate change in agriculture. J Agric Sci 148:543–552.  https://doi.org/10.1017/S0021859610000341 CrossRefGoogle Scholar
  79. Smith WN, Desjardins RL, Grant B, Li C, Lemke R, Rochette P, Corre MD, Pennock D (2002) Testing the DNDC model using N2O emissions at two experimental sites in Canada. Can J Soil Sci 82:365–374.  https://doi.org/10.4141/S01-048 CrossRefGoogle Scholar
  80. Sofo A, Nuzzo V, Palese AM, Xiloyannis C, Celano G, Zukowskyj P, Dichio B (2005) Net CO2 storage in Mediterranean olive and peach orchards. Hortic Sci 107:17–24.  https://doi.org/10.1016/j.scienta.2005.06.001 CrossRefGoogle Scholar
  81. Soil Survey Staff (2010) Keys to Soil Taxonomy. 11th Edition, USDA-NRCS, Washington DCGoogle Scholar
  82. Song Y, Chen Q, Ci D, Shao X, Zhang D (2014) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol 14:111.  https://doi.org/10.1186/1471-2229-14-111 CrossRefGoogle Scholar
  83. Sorrentino G (2001). Meccanismi fisiologici di recupero dal deficit idrico in Olivo. In: Gestione dell'acqua e del territorio per un’olivicoltura sostenibile. Atti del corso internazionale di aggiornamento tecnico-scientifico, Napoli 24–28 settembre 2001, pp. 103–119Google Scholar
  84. Souissi I, Temani N, Belhouchette H (2013) Vulnerability of Mediterranean agricultural systems to climate: from regional to field scale analysis. In: Pielke RA Sr (ed) Climate Vulnerability, Understanding and addressing threats to essential resources. Elsevier, Amsterdam, The Netherlands, Oxford, UK, Burlington, USA, pp 89–103.  https://doi.org/10.1016/B978-0-12-384703-4.00221-5 Google Scholar
  85. Testa R, Di Trapani AM, Sgroi F, Tudisca S (2014) Economic analysis of process innovations in the management of olive farms. Am J Appl Sci 11:1486–1491.  https://doi.org/10.3844/ajassp.2014.1486.1491 CrossRefGoogle Scholar
  86. Tognetti R, d’Andria R, Morelli G, Alvino A (2005) The effect of deficit irrigation on seasonal variations of plant water use in Olea europaea L. Plant Soil 273:139–155.  https://doi.org/10.1007/s11104-004-7244-z CrossRefGoogle Scholar
  87. Tonitto C, David MB, Drinkwater EL, Li C (2007) Application of the DNDC model to tile-drained Illinois agro-ecosystems: model calibration, validation, and uncertainty analysis. Nutr Cycl Agroecosyst 78:51–63.  https://doi.org/10.1007/s10705-006-9076-0 CrossRefGoogle Scholar
  88. Tupper N (2012) Spanish olive oil under constant threat from climate change. Olive Oil Times, October 26Google Scholar
  89. UNFCCC (2015) Adoption of the Paris Agreement FCCC/CP/2015/L9/Rev.1Google Scholar
  90. Villalobos FJ, Orgaz F, Testi L, Fereres E (2000) Measurement and modeling of evapotranspiration of olive (Olea europaea L.) orchards. Eur J Agron 13:155–163.  https://doi.org/10.1016/S1161-0301(00)00071-X CrossRefGoogle Scholar
  91. Villalobos FJ, Testi L, Hidalgo J, Pastor M, Orgaz F (2006) Modelling potential growth and yield of olive (Olea europaea L.) canopies. Eur J Agron 24:296–303.  https://doi.org/10.1016/j.eja.2005.10.008 CrossRefGoogle Scholar
  92. Vital JA, Gaurut M, Lardy R, Viovy N, Soussana JF, Bellocchi G, Martin R (2013) High-performance computing for climate change impact studies with the pasture simulation model. Comput Electron Agric 98:131–135.  https://doi.org/10.1016/j.compag.2013.08.004 CrossRefGoogle Scholar
  93. Xiong B, Sumner D, Matthews W (2014) A new market for an old food: the U.S. demand for olive oil. Agric Econ 45:107–118.  https://doi.org/10.1111/agec.12133 CrossRefGoogle Scholar
  94. Wang Y, Dou F, Storlien JO, Wight JP, Paustian KH, del Grosso SJ, Hons FM (2017). Simulating impacts of bioenergy Sorghum residue return on soil organic carbon and greenhouse gas emissions using the DAYCENT model. In: Field D.J., Morgan C.L.S., McBratney A.B. (eds.) Global soil security. Progress in Soil Science. Springer, ChamGoogle Scholar
  95. Weiler DA, Tornquist CG, Parton W, dos Santos HP, Santi A, Bayer C (2017) Crop biomass, soil carbon, and nitrous oxide as affected by management and climate: a DayCent application in Brazil. Soil Sci Soc Am J 81:945–955.  https://doi.org/10.2136/sssaj2017.01.0024 CrossRefGoogle Scholar
  96. Wertin TM, McGuire MA, Teskey RO (2011) Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of species range. Tree Physiol 31:1277–1288.  https://doi.org/10.1093/treephys/tpr091 CrossRefGoogle Scholar
  97. Wu CFJ, Hamada M (2009) Experiments: planning, analysis, and parameter design optimization, 2nd Edition. BWSTM, 760 pages. ISBN-10: 0471699462 ISBN-13: 978–0471699460Google Scholar
  98. Zhang Y, Xu M, Chen H, Adams J (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob Ecol Biogeogr 18:280–290.  https://doi.org/10.1111/j.1466-8238.2008.00442.x CrossRefGoogle Scholar
  99. Zhang FY, Wu PT, Zhao XN, Cheng XF (2012) Water-saving mechanisms of intercropping system in improving cropland water use efficiency. PMID 23:1400–1406 22919855Google Scholar
  100. Zhoua X, Brandle JR, Schoeneberger MM, Awada T (2007) Developing above ground woody biomass equations for open-grown, multiple-stemmed tree species: shelterbelt-grown Russian-olive. Ecol Model 202:311–323.  https://doi.org/10.1016/j.ecolmodel.2006.10.024 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • L. Brilli
    • 1
    • 2
  • E. Lugato
    • 3
  • M. Moriondo
    • 1
  • B. Gioli
    • 1
  • P. Toscano
    • 1
  • A. Zaldei
    • 1
  • L. Leolini
    • 2
  • C. Cantini
    • 4
  • G. Caruso
    • 5
  • R. Gucci
    • 5
  • P. Merante
    • 1
  • C. Dibari
    • 2
  • R. Ferrise
    • 2
  • M. Bindi
    • 2
    • 6
  • S. Costafreda-Aumedes
    • 2
  1. 1.IBIMET-CNRFlorenceItaly
  2. 2.DiSPAAUniversity of FlorenceFlorenceItaly
  3. 3.European Commission, Joint Research Centre (JRC), Directorate for Sustainable Resources, Land Resources UnitIspraItaly
  4. 4.IVALSA-CNRFollonicaItaly
  5. 5.Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali (DiSAAA-a)Università di PisaPisaItaly
  6. 6.Unità di ricerca Cambiamenti Climatici, Sistemi ed EcosistemiFlorenceItaly

Personalised recommendations