Advertisement

Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon

  • Rupesh Kumar BhomiaEmail author
  • Jeffrey van Lent
  • Julio M. Grandez Rios
  • Kristell Hergoualc’h
  • Eurídice N. Honorio Coronado
  • Daniel Murdiyarso
Original Article

Abstract

Tropical peat swamp forests (PSF) are characterized by high quantities of carbon (C) stored as organic soil deposits due to waterlogged conditions which slows down decomposition. Globally, Peru has one of the largest expanse of tropical peatlands, located primarily within the Pastaza-Marañón river basin in the Northwestern Peru. Peatland forests in Peru are dominated by a palm species—Mauritia flexuosa, and M. flexuosa-dominated forests cover ~ 80% of total peatland area and store ~ 2.3 Pg C. However, hydrologic alterations, land cover change, and anthropogenic disturbances could lead to PSF’s degradation and loss of valuable ecosystem services. Therefore, evaluation of degradation impacts on PSF’s structure, biomass, and overall C stocks could provide an estimate of potential C losses into the atmosphere as greenhouse gases (GHG) emissions. This study was carried out in three regions within Pastaza-Marañón river basin to quantify PSF’s floristic composition and degradation status and total ecosystem C stocks. There was a tremendous range in C stocks (Mg C ha−1) in various ecosystem pools—vegetation (45.6–122.5), down woody debris (2.1–23.1), litter (2.3–7.8), and soil (top 1 m; 109–594). Mean ecosystem C stocks accounting for the top 1 m soil were 400, 570, and 330 Mg C ha−1 in Itaya, Tigre, and Samiria river basins, respectively. Considering the entire soil depth, mean ecosystem C stocks were 670, 1160, and 330 Mg C ha−1 in Itaya, Tigre, and Samiria river basins, respectively. Floristic composition and calcium to Magnesium (Ca/Mg) ratio of soil profile offered evidence of a site undergoing vegetational succession and transitioning from minerotrophic to ombrotrophic system. Degradation ranged from low to high levels of disturbance with no significant difference between regions. Increased degradation tended to decrease vegetation and forest floor C stocks and was significantly correlated to reduced M. flexuosa biomass C stocks. Long-term studies are needed to understand the linkages between M. flexuosa harvest and palm swamp forest C stocks; however, river dynamics are important natural drivers influencing forest succession and transition in this landscape.

Keywords

Amazon basin Forest degradation River dynamics Peat swamp forest Soil carbon 

Notes

Acknowledgements

The research was a collaborative effort with partners from Instituto de investigaciones de la Amazonía Peruana (IIAP), US Department of Agriculture and CIFOR. Authors would like to thank Prof. Martin Herold, Dennis Del Castillo, Monica Aleman and Gloria Arellano and a group of enthusiastic people who enabled data collection in the field. We acknowledge the effort of field crew members—Nicole M Riviera, Julio Irarica, Diego Martin, Jack Pacaya, Victor Ruiz, Cecilia B Falcón, Ricardo Z Young, Elvis J Paredes, Rique B Estrada, Jose Manuel R Huaymacari, Maria E R Pena, Jhon del A Pasquel, Carlos G Hidalzo Pizano, and Luisa N Huaratapairo. The Analytical Lab, University of Hawaii, Honolulu, US is also acknowledged for performing soil elemental analysis. We also thank the SERNANP for providing research permit (No 009-2015-SERNAP-RNPS-JEF) that enabled sampling in the Pacaya Samiria National Reserve. Finally, we thank two anonymous reviewers and associate editor for their insightful comments that greatly improved this manuscript.

Funding information

This study was made possible by a grant from the US Department of Agriculture, Forest Service (FS), Washington Office, and FS International Programs, implemented by Department of Environmental Sciences, Wageningen University, The Netherlands.

Supplementary material

11027_2018_9809_MOESM1_ESM.docx (90 kb)
ESM 1 (DOCX 90 kb)

References

  1. Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, Mascaro J, Sinca F, Chadwick KD, Sousan S, Higgins M (2014) The high-resolution carbon geography of Peru. Carnegie Airborne Observatory and the ministry of environment of PerúGoogle Scholar
  2. Bailey HH (1951) Peat formation in the tropics and subtropics. Soil Sci Soc Am J 15(C):283–284Google Scholar
  3. Bernal C, Christophoul F, Darrozes J, Soula J-C, Baby P, Burgos J (2011) Late Glacial and Holocene avulsions of the Rio Pastaza Megafan (Ecuador–Peru): frequency and controlling factors. Int J Earth Sci 100:1759–1782CrossRefGoogle Scholar
  4. Bradshaw CJ, Sodhi NS, Brook BW (2008) Tropical turmoil: a biodiversity tragedy in progress. Front Ecol Environ 7:79–87CrossRefGoogle Scholar
  5. Brown JK (1974) Handbook for inventorying downed woody material. General Technical Report GTR-INT-16. in Service UF (ed) MissoulaGoogle Scholar
  6. Curtis JT, McIntosh RP (1951) An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32:476–496CrossRefGoogle Scholar
  7. Dargie GC, Lewis SL, Lawson IT, Mitchard ET, Page SE, Bocko YE, Ifo SA (2017) Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542:86–90CrossRefGoogle Scholar
  8. Delgado C, Couturier G, Mejia K (2007) Mauritia flexuosa (Arecaceae: Calamoideae), an Amazonian palm with cultivation purposes in Peru. Fruits 62:157–169CrossRefGoogle Scholar
  9. Draper FC, Roucoux KH, Lawson IT, Mitchard ET, Coronado ENH, Outi L, Montenegro LT, Sandoval EV, Baker TR (2014) The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ Res Lett 9:124017CrossRefGoogle Scholar
  10. Draper FC, Coronado ENH, Roucoux KH, Lawson IT, Pitman NC, Fine PV, Phillips OL, Montenegro LAT, Sandoval EV, Mesones I, García-Villacorta R (2017) Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography.  https://doi.org/10.1111/ecog.03126
  11. Emilio T, Quesada CA, Costa FR, Magnusson WE, Schietti J, Feldpausch TR, Brienen RJ, Baker TR, Chave J, Álvarez E (2014) Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecol Divers 7:215–229CrossRefGoogle Scholar
  12. Endress BA, Horn CM, Gilmore MP (2013) Mauritia flexuosa palm swamps: composition, structure and implications for conservation and management. Forest Ecol Manag 302:346–353CrossRefGoogle Scholar
  13. Goodman RC, Phillips OL, del Castillo Torres D, Freitas L, Cortese ST, Monteagudo A, Baker TR (2013) Amazon palm biomass and allometry. Forest Ecol Manag 310:994–1004CrossRefGoogle Scholar
  14. Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittmann F, Householder E, Herold N, Murdiyarso D (2017) An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Chang Biol 23:3581–3599CrossRefGoogle Scholar
  15. Harmon ME, Sexton J (1996) Guidelines for measurements of woody detritus in forest ecosystems. US LTER Network Office, SeattleGoogle Scholar
  16. Hergoualc’h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use change in southeast Asian tropical peatlands: a review. Glob Biogeochem Cycles 25(2).  https://doi.org/10.1029/2009GB003718
  17. Hergoualc’h K, Verchot L (2014) Greenhouse gas emission factors for land use and land-use change in southeast Asian peatlands. Mitig Adapt Strateg Glob Chang 19:789–807CrossRefGoogle Scholar
  18. Hergoualc’h K, Gutiérrez-Vélez VH, Menton M, Verchot LV (2017) Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. Forest Ecol Manag 393:63–73CrossRefGoogle Scholar
  19. Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7(5):1505–1514Google Scholar
  20. Horn CM, Gilmore MP, Endress BA (2012) Ecological and socio-economic factors influencing aguaje (Mauritia flexuosa) resource management in two indigenous communities in the Peruvian Amazon. Forest Ecol Manag 267:93–103CrossRefGoogle Scholar
  21. Householder JE, John PJ, Mathias WT, Susan P, Outi L (2012) Peatlands of the Madre de Dios River of Peru: distribution, geomorphology, and habitat diversity. Wetlands 32:359–368CrossRefGoogle Scholar
  22. Hribljan JA, Suárez E, Heckman KA, Lilleskov EA, Chimner RA (2016) Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetl Ecol Manag 24:113–127CrossRefGoogle Scholar
  23. Hribljan JA, Suarez E, Bourgeau-Chavez L, Endres S, Lilleskov EA, Chimbolema S, Wayson C, Serocki E, Chimner RA (2017) Multidate, multisensor remote sensing reveals high density of carbon-rich mountain peatlands in the páramo of Ecuador. Glob Chang Biol 23:5412–5425CrossRefGoogle Scholar
  24. Jauhiainen J, Takahashi H, Heikkinen JE, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Glob Chang Biol 11:1788–1797CrossRefGoogle Scholar
  25. Kahn F (1991) Palms as key swamp forest resources in Amazonia. Forest Ecol Manag 38:133–142CrossRefGoogle Scholar
  26. Kahn F, Mejia K (1990) Palm communities in wetland forest ecosystems of Peruvian Amazonia. For Ecol Manag 33:169–179CrossRefGoogle Scholar
  27. Kahn F, Mejia K, de Castro A (1988) Species richness and density of palms in terra firme forests of Amazonia. Biotropica 20:266–269CrossRefGoogle Scholar
  28. Kalliola R, Salo J, Puhakka M, Rajasilta M, Häme T, Neller RJ, Räsänen ME, Danjoy Arias WA (1992) Upper amazon channel migration. Naturwissenschaften 79:75–79CrossRefGoogle Scholar
  29. Kauffman JB, Donato D (2012) Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Center for International Forestry Research Center (CIFOR) Working paper 86Google Scholar
  30. Kauffman JB, Arifanti VB, Basuki I, Kurnianto S, Novita N, Murdiyarso D, Donato DC, Warren MW (2016) Protocols for the measurement, monitoring, and reporting of structure, biomass, carbon stocks and greenhouse gas emissions in tropical peat swamp forests. Center for International Forestry Research (CIFOR), BogorGoogle Scholar
  31. Kelly TJ, Baird AJ, Roucoux KH, Baker TR, Honorio Coronado EN, Ríos M, Lawson IT (2014) The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol Process 28:3373–3387CrossRefGoogle Scholar
  32. Kelly TJ, Lawson IT, Roucoux KH, Baker TR, Jones TD, Sanderson NK (2017) The vegetation history of an Amazonian domed peatland. Palaeogeogr Palaeoclimatol Palaeoecol 468:129–141CrossRefGoogle Scholar
  33. Kurnianto S, Warren M, Talbot J, Kauffman B, Murdiyarso D, Frolking S (2015) Carbon accumulation of tropical peatlands over millennia: a modeling approach. Glob Chang Biol 21:431–444CrossRefGoogle Scholar
  34. Lähteenoja O, Page S (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J Geophys Res Biogeosci 116(G2).  https://doi.org/10.1029/2010JG001508
  35. Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009a) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145CrossRefGoogle Scholar
  36. Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M (2009b) Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol 15:2311–2320CrossRefGoogle Scholar
  37. Lähteenoja O, Reátegui YR, Räsänen M, Torres DDC, Oinonen M, Page S (2012) The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Glob Chang Biol 18:164–178CrossRefGoogle Scholar
  38. Lähteenoja O, Flores B, Nelson B (2013) Tropical peat accumulation in Central Amazonia. Wetlands 33:495–503CrossRefGoogle Scholar
  39. Lawson IT, Jones TD, Kelly TJ, Coronado ENH, Roucoux KH (2014) The geochemistry of Amazonian peats. Wetlands 34:905–915CrossRefGoogle Scholar
  40. Lawson IT, Kelly T, Aplin P, Boom A, Dargie G, Draper F, Hassan P, Hoyos-Santillan J, Kaduk J, Large D (2015) Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetl Ecol Manag 23:327–346CrossRefGoogle Scholar
  41. Limpens J, Berendse F, Blodau C, Canadell J, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–1491CrossRefGoogle Scholar
  42. Manzi M, Coomes OT (2009) Managing Amazonian palms for community use: a case of aguaje palm (Mauritia flexuosa) in Peru. Forest Ecol Manag 257:510–517CrossRefGoogle Scholar
  43. Marengo J (1998) Climatología de la zona de Iquitos, Perú Geoecologia y desarrollo Amazonico: estudio integrado en la zona de Iquitos. Peru University of Turku Press, Turku, pp 35–57Google Scholar
  44. Maria Pacheco SL (2005) Nutritional and ecological aspects of buriti or aguaje (Mauritia flexuosa Linnaeus filius): a carotene-rich palm fruit from Latin America. Ecol Food Nutr 44:345–358CrossRefGoogle Scholar
  45. Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–198CrossRefGoogle Scholar
  46. MINAM (2010) Mapa del Patrimonio Forestal Nacional. In: Dirección General de Evaluación VyFdPN (ed) Ministerio del Ambiente-MINAM, Lima, PeruGoogle Scholar
  47. Morozova GS, Smith ND (2003) Organic matter deposition in the Saskatchewan River floodplain (Cumberland Marshes, Canada): effects of progradational avulsions. Sediment Geol 157:15–29CrossRefGoogle Scholar
  48. Murdiyarso D, Kauffman JB, Verchot LV (2013) Climate change mitigation strategies should include tropical wetlands. Carbon Manag 4:491–499CrossRefGoogle Scholar
  49. Neller R, Salo J, Rasanen M (1992) On the formation of blocked valley lakes by channel avulsion in Upper Amazon foreland basins. Z Geomorphol 36:401–411Google Scholar
  50. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818CrossRefGoogle Scholar
  51. Palace M, Keller M, Hurtt G, Frolking S (2012) A review of above ground necromass in tropical forests. In: Sudarshana P, Nageswara-Rao M, Soneji JR (eds) Tropical forests. Intech (online publisher), pp 215–252. Published online at: http://www.intechopen.com/books/tropical-forests
  52. Parodi JL, Freitas D (1990) Geographical aspects of forested wetlands in the lower Ucayali, Peruvian Amazonia. Forest Ecol Manag 33:157–168CrossRefGoogle Scholar
  53. Posa MRC, Wijedasa LS, Corlett RT (2011) Biodiversity and conservation of tropical peat swamp forests. Bioscience 61:49–57CrossRefGoogle Scholar
  54. Queiroz JSD, Silva F, Ipenza C, Hernick C, Batallanos L, Griswold D, Rogers AE (2014) Peru tropical forest and biodiversity assessment. USAID. Published online at http://www.usaidgems.org/Documents/FAA&Regs/FAA118119LAC/Peru%20FAA%20118%20119%20FB%20Assessment%20August%202014.pdf
  55. Räsänen ME, Salo J, Jungnert H, Pittman LR (1990) Evolution of the western Amazon lowland relief: impact of Andean foreland dynamics. Terra Nova 2:320–332CrossRefGoogle Scholar
  56. Räsänen M, Neller R, Salo J, Jungner H (1992) Recent and ancient fluvial deposition systems in the Amazonian foreland basin, Peru. Geol Mag 129:293–306CrossRefGoogle Scholar
  57. Rieley J, Wüst R, Jauhiainen J, Page S, Wösten H, Hooijer A, Siegert F, Limin S, Vasander H, Stahlhut M (2008) Tropical peatlands: carbon stores, carbon gas emissions and contribution to climate change processes. In: Peatlands and climate change, vol 12. International Peat Society, Vapaudenkatu, pp 148–182Google Scholar
  58. Rodríguez F (1990) Los suelos de áreas inundables de la Amazonía Peruana: potencial, limitaciones y estrategias para su investigación. Folia Amazónica IIAP 2:7–25CrossRefGoogle Scholar
  59. Roucoux KH, Lawson IT, Jones TD, Baker TR, Coronado EH, Gosling WD, Lähteenoja O (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoclimatol Palaeoecol 374:242–255CrossRefGoogle Scholar
  60. Sierra CA, del Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M, Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM, Loaiza LM, Benjumea JF (2007) Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecol Manag 243:299–309CrossRefGoogle Scholar
  61. Simard RR (1993) Ammonium acetate-extractable elements. In: Carter MR (ed) Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publishers, Boca Raton, pp 39–49Google Scholar
  62. Smith ND, Cross TA, Dufficy JP, Clough SR (1989) Anatomy of an avulsion. Sedimentology 36:1–23CrossRefGoogle Scholar
  63. Terborgh J, Andresen E (1998) The composition of Amazonian forests: patterns at local and regional scales. J Trop Ecol 14:645–664CrossRefGoogle Scholar
  64. Thompson ID, Guariguata MR, Okabe K, Bahamondez C, Nasi R, Heymell V, Sabogal C (2013) An operational framework for defining and monitoring forest degradation. Ecol Soc 18:20CrossRefGoogle Scholar
  65. van Lent J, Hergoualc’h K, Verchot L, Oenema O, van Groenigen JW (2018) Greenhouse gas emissions along a peat swamp forest degradation gradient in the Peruvian Amazon: soil moisture and palm roots effects. Mitig Adapt Strateg Glob Chang 1–19.  https://doi.org/10.1007/s11027-018-9796-x
  66. Virapongse A, Endress BA, Gilmore MP, Horn C, Romulo C (2017) Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Glob Ecol Conserv 10:70–92CrossRefGoogle Scholar
  67. Yule CM, Gomez LN (2009) Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetl Ecol Manag 17:231–241CrossRefGoogle Scholar
  68. Zambrana NYP, Byg A, Svenning J-C, Moraes M, Grandez C, Balslev H (2007) Diversity of palm uses in the western Amazon. Biodivers Conserv 16:2771–2787CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rupesh Kumar Bhomia
    • 1
    Email author
  • Jeffrey van Lent
    • 2
    • 3
  • Julio M. Grandez Rios
    • 4
  • Kristell Hergoualc’h
    • 2
  • Eurídice N. Honorio Coronado
    • 4
  • Daniel Murdiyarso
    • 2
  1. 1.Wetland Biogeochemistry Laboratory, Soil and Water Sciences DepartmentUniversity of FloridaGainesvilleUSA
  2. 2.Center for International Forestry Research (CIFOR)BogorIndonesia
  3. 3.Department for Soil QualityWageningen URWageningenThe Netherlands
  4. 4.Instituto de Investigaciones de la Amazonía Peruana (IIAP)IquitosPeru

Personalised recommendations