Is Indonesian peatland loss a cautionary tale for Peru? A two-country comparison of the magnitude and causes of tropical peatland degradation

  • Erik LilleskovEmail author
  • Kevin McCullough
  • Kristell Hergoualc’h
  • Dennis del Castillo Torres
  • Rodney Chimner
  • Daniel Murdiyarso
  • Randy Kolka
  • Laura Bourgeau-Chavez
  • John Hribljan
  • Jhon del Aguila Pasquel
  • Craig Wayson
Original Article


Indonesia and Peru harbor some of the largest lowland tropical peatland areas. Indonesian peatlands are subject to much greater anthropogenic activity than Peru’s, including drainage, logging, agricultural conversion, and burning, resulting in high greenhouse gas and particulate emissions. To derive insights from the Indonesian experience, we explored patterns of impact in the two countries, and compared their predisposing factors. Impacts differ greatly among Indonesian regions and the Peruvian Amazon in the following order: Sumatra > Kalimantan > Papua > Peru. All impacts, except fire, are positively related to population density. Factors enhancing Indonesian peatlands’ susceptibility to disturbance include peat doming that facilitates drainage, coastal location, high local population, road access, government policies permitting peatland use, lack of enforcement of protections, and dry seasons that favor extensive burning. The main factors that could reduce peatland degradation in Peru compared with Indonesia are geographic isolation from coastal population centers, more compact peatland geomorphology, lower population and road density, more peatlands in protected areas, different land tenure policies, and different climatic drivers of fire; whereas factors that could enhance peatland degradation include oil and gas development, road expansion in peatland areas, and an absence of government policies explicitly protecting peatlands. We conclude that current peatland integrity in Peru arises from a confluence of factors that has slowed development, with no absolute barriers protecting Peruvian peatlands from a similar fate to Indonesia’s. If the goal is to maintain the integrity of Peruvian peatlands, government policies recognizing unique peatland functions and sensitivities will be necessary.


Agriculture Fire Forest cover loss Indonesia Oil palm Peru Plantations Population density Roads Tropical peatlands 



This material is based upon work supported in part by the United States Agency for International Development under award number USAID-USFS Participating Agency Program Agreement (PAPA) AID-EGEE-T-16-00001 in support of the Sustainable Wetlands Adaptation and Mitigation (SWAMP) program. The views and opinions expressed in this paper are those of the authors and not necessarily the views and opinions of the United States Agency for International Development. We also thank four anonymous reviewers for their constructive feedback.

Supplementary material

11027_2018_9790_MOESM1_ESM.pdf (74 kb)
ESM 1 (PDF 73.8 kb)


  1. Aldrian E, Susanto RD (2003) Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int J Climatol 23:1435–1452. CrossRefGoogle Scholar
  2. Angelsen A, Brockhaus M, Duchelle AE, Larson A, Martius C, Sunderlin WD, Verchot L, Wong G, Wunder S (2017) Learning from REDD+: a response to fletcher et al. Conserv Biol 31:718–720. CrossRefGoogle Scholar
  3. Armenteras D, Barreto JS, Tabor K, Molowny-Horas R, Retana J (2017) Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences 14:2755–2765. CrossRefGoogle Scholar
  4. Baird AJ, Low R, Young D, Swindles GT, Lopez OR, Page S (2017) High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophys Res Lett 44:1333–1339. CrossRefGoogle Scholar
  5. Bax V, Francesconi W, Quintero M (2016) Spatial modeling of deforestation processes in the central Peruvian Amazon. J Nat Conserv 29:79–88CrossRefGoogle Scholar
  6. Blackman A, Corral L, Lima ES, Asner GP (2017) Titling indigenous communities protects forests in the Peruvian Amazon. Proc Natl Acad Sci U S A 114:4123–4128. CrossRefGoogle Scholar
  7. Brewer CA (2017) Accessed 1 Nov 2017
  8. Brockhaus M, Obidzinski K, Dermawan A, Laumonier Y, Luttrell C (2012) An overview of forest and land allocation policies in Indonesia: is the current framework sufficient to meet the needs of REDD+? Forest Policy Econ 18:30–37CrossRefGoogle Scholar
  9. Bruner AG, Gullison RE, Rice RE, Da Fonseca GA (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128. CrossRefGoogle Scholar
  10. Bush MB, Silman MR, McMichael C, Saatchi S (2008) Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philos Trans R Soc B 363:1795–1802CrossRefGoogle Scholar
  11. Center for International Earth Science Information Network - CIESIN - Columbia University (2016) Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Accessed July 2017
  12. Chen Y, Randerson JT, Morton DC (2015) Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires. Geophys Res Lett 42:6462–6470. CrossRefGoogle Scholar
  13. Chown SL, van Rensburg BJ, Gaston KJ, Rodrigues AS, van Jaarsveld AS (2003) Energy, species richness, and human population size: conservation implications at a national scale. Ecol Appl 13:1233–1241CrossRefGoogle Scholar
  14. Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919. CrossRefGoogle Scholar
  15. Crump J (2017) Smoke on water – countering global threats from peatland loss and degradation. A UNEP Rapid Response Assessment. United Nations Environment Programme and GRID-Arendal, Nairobi and ArendalGoogle Scholar
  16. Curran LM, Trigg SN, McDonald AK, Astiani D, Hardiono YM, Siregar P, Caniago I, Kasischke E (2004) Lowland forest loss in protected areas of Indonesian Borneo. Science 303:1000–1003CrossRefGoogle Scholar
  17. Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, Ifo SA (2017) Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542:86–90. CrossRefGoogle Scholar
  18. del Aguila-Pasquel J (2017) Methane fluxes and porewater dissolved organic carbon dynamics from different peatlands types in the Pastaza-Maranon Basin fo the Peruvian Amazon. Master’s Thesis, Michigan Technological UniversityGoogle Scholar
  19. Dommain R, Couwenberg J, Joosten H (2010) Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration. Mires Peat 6 Article 05:1–17Google Scholar
  20. Dommain R, Couwenberg J, Glaser PH, Joosten H, Suryadiputra IN (2014) Carbon storage and release in Indonesian peatlands since the last deglaciation. Quat Sci Rev 97:1–32CrossRefGoogle Scholar
  21. Doxsey-Whitfield E, MacManus K, Adamo SB, Pistolesi L, Squires J, Borkovska O, Baptista SR (2015) Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4. Pap Appl Geog 1:226–234. CrossRefGoogle Scholar
  22. Draper FC, Roucoux KH, Lawson IT, Mitchard ET, Coronado EN, Lähteenoja O, Montenegro LT, Sandoval EV, Zaráte R, Baker TR (2014) The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ Res Lett 9:124017CrossRefGoogle Scholar
  23. Drösler M, Verchot LV, Freibauer A, Pan G, Evans CD, Bourbonniere RA, Alm JP, Page S, Agus F, Hergoualc'h K, Couwenberg J (2014) Chapter 2: drained inland organic soils. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG (eds) 2013 supplement to the 2006 IPCC guidelines for National Greenhouse gas Inventories: wetlands. Intergovernmental Panel on Climate Change, Switzerland, pp 2.1–2.79Google Scholar
  24. Dunn C, Freeman C (2011) Peatlands: our greatest source of carbon credits? Carbon Manag 2:289–301CrossRefGoogle Scholar
  25. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486CrossRefGoogle Scholar
  26. Erfanian A, Wang G, Fomenko L (2017) Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST. Sci Rep 7:5811. CrossRefGoogle Scholar
  27. Espinoza Villar JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, de Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29:1574–1594CrossRefGoogle Scholar
  28. Espinoza JC, Ronchail J, Guyot JL, Junquas C, Vauchel P, Lavado W, Drapeau G, Pombosa R (2011) Climate variability and extreme drought in the upper Solimões River (western Amazon Basin): understanding the exceptional 2010 drought. Geophys Res Lett 38:L13406. CrossRefGoogle Scholar
  29. Fernandes K, Baethgen W, Bernardes S, DeFries R, DeWitt DG, Goddard L, Lavado W, Lee DE, Padoch C, Pinedo-Vasquez M, Uriarte M (2011) North tropical Atlantic influence on western Amazon fire season variability. Geophys Res Lett 38:L12701. CrossRefGoogle Scholar
  30. Finer M, Orta-Martínez M (2010) A second hydrocarbon boom threatens the Peruvian Amazon: trends, projections, and policy implications. Environ Res Lett 5:014012CrossRefGoogle Scholar
  31. Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS One 3:e2932CrossRefGoogle Scholar
  32. Finer M, Jenkins CN, Powers B (2013) Potential of best practice to reduce impacts from oil and gas projects in the Amazon. PLoS One 8:e63022. CrossRefGoogle Scholar
  33. Finer M, Jenkins CN, Sky MAB, Pine J (2014) Logging concessions enable illegal logging crisis in the Peruvian Amazon. Sci Rep 4:4719. CrossRefGoogle Scholar
  34. Finer M, Babbitt B, Novoa S, Ferrarese F, Pappalardo SE, De Marchi M, Saucedo M, Kumar A (2015) Future of oil and gas development in the western Amazon. Environ Res Lett 10:024003CrossRefGoogle Scholar
  35. Gaveau DLA, Salim MA, Hergoualc'h K, Locatelli B, Sloan S, Wooster M, Marlier ME, Molidena E, Yaen H, DeFries R, Verchot L, Murdiyarso D, Nasi R, Holmgren P, Sheil D (2014) Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci Rep 4:6112CrossRefGoogle Scholar
  36. Gingold B, Rosenbarger A, Muliastra YI, Stolle F, Sudana IM, Manessa MD, Murdimanto A, Tiangga SB, Madusari CC, Douard P (2012) How to identify degraded land for sustainable palm oil in Indonesia. World Resources Institute, Washington, DCGoogle Scholar
  37. Glave M, Vergara K (2016) Modelos de localización de áreas potenciales para el cultivo de palma aceitera sostenible en el ámbito amazónico del Perú. In: Fort R, Borasino E (eds) ¿Agroindustria en la Amazonía? Posibilidades para el desarrollo inclusivo y sostenible dela palma aceitera en el Perú. GRADE, LimaGoogle Scholar
  38. Graham V, Laurance SG, Grech A, Venter O (2017) Spatially explicit estimates of forest carbon emissions, mitigation costs and REDD+ opportunities in Indonesia. Environ Res Lett 12:044017CrossRefGoogle Scholar
  39. Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittmann F, Householder E, Herold N, Murdiyarso D (2017) An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Chang Biol 23:3581–3599. CrossRefGoogle Scholar
  40. Gutiérrez-Vélez VH, DeFries R, Pinedo-Vásquez M, Uriarte M, Padoch C, Baethgen W, Fernandes K, Lim Y (2011) High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ Res Lett 6:044029. CrossRefGoogle Scholar
  41. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853 Data available on-line from: CrossRefGoogle Scholar
  42. Hasan MH, Mahlia TMI, Nur H (2012) A review on energy scenario and sustainable energy in Indonesia. Renew Sust Energ Rev 16:2316–2328CrossRefGoogle Scholar
  43. Henson IE, Harun MH, Chang KC (2008) Some observations on the effects of high water tables and flooding on oil palm, and a preliminary model of oil palm water balance and use in the presence of a high water table. Oil Palm Bull 56:14–22Google Scholar
  44. Hergoualc’h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review. Glob Biogeochem Cycles 25:GB2001. CrossRefGoogle Scholar
  45. Hergoualc’h K, Gutiérrez-Vélez VH, Menton M, Verchot LV (2017a) Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. For Ecol Manag 393:63–73CrossRefGoogle Scholar
  46. Hergoualc’h K, Atmadja S, Carmenta R, Martius C, Murdiyarso D, Purnomo H (2017b) Managing peatlands in Indonesia: challenges and opportunities for local and global communities. Center for International Forestry Research (CIFOR), Bogor. CrossRefGoogle Scholar
  47. Horn CM, Gilmore MP, Endress BA (2012) Ecological and socio-economic factors influencing aguaje (Mauritia flexuosa) resource management in two indigenous communities in the Peruvian Amazon. For Ecol Manag 267:93–103CrossRefGoogle Scholar
  48. Ichikawa M, Ricse A, Ugarte J, Kobayashi S (2014) Migration patterns and land use by immigrants under a changing frontier society in the Peruvian Amazon. Tropics 23:73–82CrossRefGoogle Scholar
  49. Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:151–158CrossRefGoogle Scholar
  50. Jaenicke J, Wösten H, Budiman A, Siegert F (2010) Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig Adapt Strat Gl 15:223–239CrossRefGoogle Scholar
  51. Joppa LN, Pfaff A (2011) Global protected area impacts. Proc R Soc Lond B Biol 278:1633–1638CrossRefGoogle Scholar
  52. Ju J, Gopal S, Kolaczyk ED (2005) On the choice of spatial and categorical scale in remote sensing land cover classification. Remote Sens Environ 96:62–77CrossRefGoogle Scholar
  53. Kelly TJ, Baird AJ, Roucoux KH, Baker TR, Honorio Coronado EN, Ríos M, Lawson IT (2014) The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol Process 28:3373–3387. CrossRefGoogle Scholar
  54. Krishna VV, Kubitza C, Pascual U, Qaim M (2017) Land markets, property rights, and deforestation: insights from Indonesia. World Dev 99:335–349. CrossRefGoogle Scholar
  55. Kvist LP, Nebel G (2001) A review of Peruvian flood plain forests: ecosystems, inhabitants and resource use. For Ecol Manag 150:3–26CrossRefGoogle Scholar
  56. Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79(2):140–145CrossRefGoogle Scholar
  57. Lähteenoja O, Rojas Reategui YR, Rasanen M et al (2012) The large Amazonian peatland carbon sink in the subsiding Pastaza-Maranon foreland basin, Peru. Glob Chang Biol 18:164–178CrossRefGoogle Scholar
  58. Laurance WF, Albernaz AK, Schroth G, Fearnside PM, Bergen S, Venticinque EM, Da Costa C (2002) Predictors of deforestation in the Brazilian Amazon. J Biogeogr 29:737–748CrossRefGoogle Scholar
  59. Laurance WF, Goosem M, Laurance SG (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24:659–669CrossRefGoogle Scholar
  60. Laurance WF, Clements GR, Sloan S, O’connell CS, Mueller ND, Goosem M, Venter O, Edwards DP, Phalan B, Balmford A, Van Der Ree R (2014) A global strategy for road building. Nature 513:229–232CrossRefGoogle Scholar
  61. Leinbach TR (1989) The transmigration programme in Indonesian national development strategy: Current status and future requirements. Habitat Int 13:81–93CrossRefGoogle Scholar
  62. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications–a synthesis. Biogeosciences 5:1475–1491CrossRefGoogle Scholar
  63. Lubis HA, Isnaeni M, Sjafruddin A, Dharmowijoyo BD (2005) Multimodal transport in Indonesia: recent profile and strategy development. In: Proc E Asia Soc Tran 5:46–64Google Scholar
  64. Lujala P, Rød JK, Thieme N (2007) Fighting over oil: introducing a new dataset. Conflict Manag Peace 24:239–256CrossRefGoogle Scholar
  65. Manzi M, Coomes OT (2009) Managing Amazonian palms for community use: a case of aguaje palm (Mauritia flexuosa) in Peru. For Ecol Manag 257:510–517CrossRefGoogle Scholar
  66. Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050CrossRefGoogle Scholar
  67. McAfee K (2016) Green economy and carbon markets for conservation and development: a critical view. Int Environ Agreem-P 16:333–353CrossRefGoogle Scholar
  68. Miettinen J, Shi C, Liew SC (2012) two decades of destruction in Southeast Asia’s peat swamp forests. Front Ecol Environ 10:124–128. CrossRefGoogle Scholar
  69. Miettinen J, Shi C, Liew SC (2016) Land cover distribution in the peatlands of peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob Ecol Cons 6:67–78. CrossRefGoogle Scholar
  70. Miettinen J, Hooijer A, Vernimmen R, Liew SC, Page SE (2017) From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ Res Lett 12:024014CrossRefGoogle Scholar
  71. Morel AC, Morel BF (2012) How could carbon credits for reducing deforestation compete with returns from palm oil: a proposal for a more flexible REDD valuation tool. J Sustain For 31:11–28CrossRefGoogle Scholar
  72. Murdiyarso D, Adiningsih E (2007) Climatic anomalies, Indonesian vegetation fires and terrestrial carbon emissions. Mitig Adapt Strat Gl 12:101–112CrossRefGoogle Scholar
  73. Murdiyarso D, Lebel L (2007a) Local and global perspectives of forest and land fires in Southeast Asia. Mitig Adapt Strat Gl 12:3–11CrossRefGoogle Scholar
  74. Murdiyarso D, Lebel L (2007b) Southeast Asian fire regimes and land development policy. In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer, New York, pp 261–271CrossRefGoogle Scholar
  75. Murdiyarso D, Hergoualc'h K, Verchot LV (2010) Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc Natl Acad Sci U S A 107:19655–19660CrossRefGoogle Scholar
  76. Naughton-Treves L (2004) Deforestation and carbon emissions at tropical frontiers: a case study from the Peruvian Amazon. World Dev 32:173–190CrossRefGoogle Scholar
  77. Oliveira PJ, Asner GP, Knapp DE, Almeyda A, Galván-Gildemeister R, Keene S, Raybin RF, Smith RC (2007) Land-use allocation protects the Peruvian Amazon. Science 317:1233–1236CrossRefGoogle Scholar
  78. Page SE, Siegert F, Rieley JO, Boehm HD (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65. CrossRefGoogle Scholar
  79. Page SE, Rieley JO, Wüst R (2006) Lowland tropical peatlands of Southeast Asia. In: Developments in Earth Surface Processes, vol 9, pp 145–172Google Scholar
  80. Page S, Hosciło A, Wösten H, Jauhiainen J, Silvius M, Rieley J, Ritzema H, Tansey K, Graham L, Vasander H, Limin S (2009) Restoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions. Ecosystems 12:888–905CrossRefGoogle Scholar
  81. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818CrossRefGoogle Scholar
  82. Pearce F (2007) Indonesia's carbon catastrophe. New Sci 196:50–53CrossRefGoogle Scholar
  83. Peru, Congreso de la Republica (2017) Ley 30670, Ley que Declara de necesidad Publica e Interés Nacional la Construcción de la Carretera Iquitos-Saramiriza para la Interconexión con la Costa Norte. El Peruano, 04 October, 2017Google Scholar
  84. Peru, El Presidente de la República (2013) Decreto Supremo No 005–2013, Crean Comisión Multisectorial de Naturaleza Permanente denominada "Comité Nacional de Humedales". Normas Legales. El Peruano, January 9 2013: 485785–6 (
  85. Perú, Ministerio de Agricultura (2012) Estudio sobre la potencialidad de la palma aceitera para reducer la dependencia de oleaginosas importadas en el Peru. MINAGRA, LimaGoogle Scholar
  86. Perú, Ministerio de Agricultura (2016) Plan Nacional de Desarrollo Sostenible de la Palma Aceitera en el Peru 2016–2025. MINAGRA, LimaGoogle Scholar
  87. Perú, Ministerio del Ambiente (2015a) Estrategia Nacional de Humedales. Ministerio del Ambiente, Dirección General de Diversidad Biológica.: MINAM, LimaGoogle Scholar
  88. Perú, Ministerio del Ambiente (2015b) Peru’s submission of a Forest reference emission level (FREL) for reducing emissions from deforestation in the Peruvian Amazon. MINAM, LimaGoogle Scholar
  89. Perú, Ministerio del Ambiente (2016a) Estrategia Nacional sobre Bosques y Cambio Climático. MINAM, LimaGoogle Scholar
  90. Perú, Ministerio del Ambiente (2016b) Decreto Supremo que Aprueba la Categorizacion de la Zona Reservada Yaguas en Parque Nacional Yaguas. MINAM, LimaGoogle Scholar
  91. Potter L (2015) Managing palm oil landscapes: a seven-country survey of the modern palm oil industry in Southeast Asia, Latin America and West Africa. Center for International Forestry Research, LimaGoogle Scholar
  92. Poulter B, MacBean N, Hartley A, Khlystov I, Arino O, Betts R et al (2015) Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative. Geosci Mod Dev 8:2315–2328 (CCI-LC visualization interface: Scholar
  93. Resosudarmo IA, Atmadja S, Ekaputri AD, Intarini DY, Indriatmoko Y, Astri P (2014) Does tenure security lead to REDD+ project effectiveness? Reflections from five emerging sites in Indonesia. World Dev 55:68–83CrossRefGoogle Scholar
  94. Rieley JO, Wüst RA, Jauhiainen J, Page SE, Wösten JH, Hooijer A, Siegert E, Limin SH, Vasander H, Stahlhut M (2008) Tropical peatlands: carbon stores, carbon gas emissions and contribution to climate change processes. In: Strack M (ed) Peatlands and climate change. International peat society, Laskunet. pp 148–181Google Scholar
  95. Roucoux KH, Lawson IT, Baker TR, Del Castillo Torres D, Draper FC, Lähteenoja O, Gilmore MP, Honorio Coronado EN, Kelly TJ, Mitchard ET, Vriesendorp CF (2017) Threats to intact tropical peatlands and opportunities for their conservation. Cons Bio 31:1283–1292. CrossRefGoogle Scholar
  96. RSB (2010) RSB Guidance on Principles & Criteria for Sustainable Biofuel Production. RSB reference code: [RSB-GUI-01-000 (Version 2.1)] Roundtable on Sustainable Biomaterials, GenevaGoogle Scholar
  97. RSPO (2013) Principles and criteria for the production of sustainable palm oil. Roundtable on Sustainable Palm Oil, Kuala LumpurGoogle Scholar
  98. Sabandar WP (2004) Transport development and the rural economy: insights from Indonesia. Dissertation, University of CanterburyGoogle Scholar
  99. Salonen M, Maeda EE, Toivonen T (2014) Evaluating the impact of distance measures on deforestation simulations in the fluvial landscapes of Amazonia. Ambio 43:779–790CrossRefGoogle Scholar
  100. Sánchez-Azofeifa GA, Daily GC, Pfaff AS, Busch C (2003) Integrity and isolation of Costa Rica's national parks and biological reserves: examining the dynamics of land-cover change. Biol Conserv 109:123–135CrossRefGoogle Scholar
  101. Schleicher J, Peres CA, Amano T, Llactayo W, Leader-Williams N (2017) Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci Rep 7:11318CrossRefGoogle Scholar
  102. Semeniuk V, Semeniuk CA (1997) A geomorphic approach to global classification for natural inland wetlands and rationalization of the system used by the Ramsar convention–a discussion. Wetl Ecol Manag 5:145–158CrossRefGoogle Scholar
  103. Siegert F, Ruecker G, Hinrichs A, Hoffmann AA (2001) Increased damage from fires in logged forests during droughts caused by El Niño. Nature 414:437–440CrossRefGoogle Scholar
  104. Slocum TA, McMaster RB, Kessler FC, Howard HH (2005) Thematic cartography and geographic visualization, 2nd edn. Pearson Education, Upper Saddle RiverGoogle Scholar
  105. Sunderlin WD, Larson AM, Duchelle AE, Resosudarmo IA, Huynh TB, Awono A, Dokken T (2014) How are REDD+ proponents addressing tenure problems? Evidence from Brazil, Cameroon, Tanzania, Indonesia, and Vietnam. World Dev 55:37–52. CrossRefGoogle Scholar
  106. Tanneberger F, Wichtmann W (2011) Carbon credits from peatland rewetting: climate, biodiversity, land use. Schweizerbart Science Publishers, StuttgartGoogle Scholar
  107. Transparent World (2015) Tree plantations. Accessed through Global Forest Watch, July 2017.
  108. Turetsky MR, Benscoter B, Page S, Rein G, Van Der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8:11–14CrossRefGoogle Scholar
  109. UNEP-WCMC (2016) World Database on Protected Areas User Manual 1.4. UNEP-WCMC, Cambridge. Available at:
  110. Uriarte M, Pinedo-Vasquez M, DeFries RS, Fernandes K, Gutierrez-Velez V, Baethgen WE, Padoch C (2012) Depopulation of rural landscapes exacerbates fire activity in the western Amazon. Proc Natl Acad Sci U S A 109:21546–21550CrossRefGoogle Scholar
  111. Wang C, Deser C, Yu JY, DiNezio P, Clement A (2017) El Niño and southern oscillation (ENSO): a review. In: Manello DP, Enochs IC (eds) Glynn PW, Coral Reefs of the Eastern Tropical Pacific. Springer Netherlands, pp 85–106Google Scholar
  112. Warren M, Hergoualc’h K, Kauffman JB, Murdiyarso D, Kolka R (2017) An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manag 12(12):12. CrossRefGoogle Scholar
  113. Watson JE, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature 515:67–73CrossRefGoogle Scholar
  114. White D (2014) A perfect storm? Indigenous rights within a national REDD+ readiness process in Peru. Mitig Adapt Strateg Glob Chang 19:657–676CrossRefGoogle Scholar
  115. Yamamoto Y, Takeuchi K (2016) The potential for REDD+ in peatland of Central Kalimantan, Indonesia. In: Osaki M, Tsuji N (eds) Tropical peatland ecosystems. Springer, Japan, pp 599–612CrossRefGoogle Scholar
  116. Yin Y, Ciais P, Chevallier F, van der Werf GR, Fanin T, Broquet G, Boesch H, Cozic A, Hauglustaine D, Szopa S, Wang Y (2016) Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophys Res Lett 43:10,472–10,479. CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • Erik Lilleskov
    • 1
    Email author
  • Kevin McCullough
    • 2
  • Kristell Hergoualc’h
    • 3
  • Dennis del Castillo Torres
    • 4
  • Rodney Chimner
    • 5
  • Daniel Murdiyarso
    • 3
    • 6
  • Randy Kolka
    • 7
  • Laura Bourgeau-Chavez
    • 8
  • John Hribljan
    • 5
  • Jhon del Aguila Pasquel
    • 4
    • 5
  • Craig Wayson
    • 9
  1. 1.USDA Forest Service, Northern Research StationHoughtonUSA
  2. 2.USDA Forest Service, Northern Research StationMadisonUSA
  3. 3.Center for International Forestry Research (CIFOR)BogorIndonesia
  4. 4.Instituto de Investigaciones de la Amazonia Peruana (IIAP)IquitosPeru
  5. 5.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  6. 6.Department of Geophysics and MeteorologyBogor Agricultural UniversityBogorIndonesia
  7. 7.USDA Forest Service, Northern Research StationGrand RapidsUSA
  8. 8.Michigan Tech Research InstituteMichigan Technological UniversityAnn ArborUSA
  9. 9.USDA Forest Service, International ProgramsWashingtonUSA

Personalised recommendations