Advertisement

Does planned retreat matter? Investigating land use change under the impacts of flooding induced by sea level rise

  • Jie Song
  • Xinyu Fu
  • Ruoniu Wang
  • Zhong-Ren Peng
  • Zongni Gu
Original Article

Abstract

Coastal regions worldwide are during the process of rapid urban expansion. However, expanded urban settlements in land-sea interfaces have been faced with unprecedented threats from climate change related hazards. Adaptation to coastal hazards has received increasing attention from city managers and planners. Adaptation and land management practices are largely informed by remote sensing and land change modeling. This paper establishes a framework that integrates land change analysis, coastal flooding, and sea level rise adaptation. Multilayer perceptron neural network, similarity learning, and binary logistic regression were applied to analyze spatiotemporal changes of residential, commercial, and other built-up areas in Bay County, Florida, USA. The prediction maps of 2030 were produced by three models under four policy scenarios that included the population relocation strategy. Validation results reveal that three models return overall acceptable accuracies but generate distinct landscape patterns. Predictions indicate that planned retreat of residents can greatly reduce urban vulnerability to sea level rise induced flooding. While managed realignment of the coast brings large benefits, the paper recommends different mixes of adaptation strategies for different parts of the globe, and advocates the application of reflective land use planning to foster a more disaster resilient coastal community.

Keywords

Land use change Sea level rise Population relocation Urban growth Flooding Multilayer perceptron SimWeight Logistic regression Land use planning 

Notes

Acknowledgements

This study was supported by the Florida Sea Grant, Grant No. R/GOM-RP-2, “A Parameterized Climate Change Projection Model for Hurricane Flooding, Wave Action, Economic Damages, and Population Dynamics.” This work was also funded by the University of Florida Graduate School Dissertation Award.

References

  1. Abel N, Gorddard R, Harman B, Leitch A, Langridge J, Ryan A, Heyenga S (2011) Sea level rise, coastal development and planned retreat: analytical framework, governance principles and an Australian case study. Environmental Science & Policy 14:279–288. doi: 10.1016/j.envsci.2010.12.002 CrossRefGoogle Scholar
  2. Barnett J (2001) Adapting to climate change in Pacific Island countries: the problem of uncertainty. World Dev 29:977–993. doi: 10.1016/S0305-750X(01)00022-5 CrossRefGoogle Scholar
  3. Bay County Online (2016) Future land use and zoning http://www.baycountyfl.gov/gis.php
  4. Bedsworth LW, Hanak E (2010) Adaptation to Climate Change. J Am Plann Assoc 76:477–495. doi: 10.1080/01944363.2010.502047 CrossRefGoogle Scholar
  5. Bierbaum R et al (2013) A comprehensive review of climate adaptation in the United States: more than before, but less than needed. Mitig Adapt Strateg Glob Chang 18:361–406. doi: 10.1007/s11027-012-9423-1 CrossRefGoogle Scholar
  6. Bradley AV et al (2016) SimiVal, a multi-criteria map comparison tool for land-change model projections. Environ Model Softw 82:229–240. doi: 10.1016/j.envsoft.2016.04.016 CrossRefGoogle Scholar
  7. Burby RJ, Deyle RE, Godschalk DR, Olshansky RB (2000) Creating hazard resilient communities through land-use planning. Nat Hazard Rev 1:99–106CrossRefGoogle Scholar
  8. Bureau of Economic and Business Research (2016) The Trends of Taxable Sales of Tourism and Recreation at the Panama City-Lynn Haven-Panama City Beach Metropolitan Statistical Area https://www.bebr.ufl.edu/data/7533/msa/37460-msa-panama-city-lynn-haven-panama-city-beach-fl. Accessed May 1 2017
  9. Carmin J, Anguelovski I, Roberts D (2012) Urban Climate Adaptation in the Global South: Planning in an Emerging Policy Domain. J Plan Educ Res 32:18–32. doi: 10.1177/0739456x11430951 CrossRefGoogle Scholar
  10. Clark Labs (2016) Terrset Help System http://clarklabs.org/wp-content/uploads/2015/07/TerrSet-Help-System.zip. Accessed July 24, 2016
  11. Cochrane L et al. (2017) A reflection on collaborative adaptation research in Africa and Asia. Regional Environmental Change:1-9 doi: 10.1007/s10113-017-1140-6
  12. Cooper JAG, Jackson DWT, Navas F, McKenna J, Malvarez G (2004) Identifying storm impacts on an embayed, high-energy coastline: examples from western Ireland. Marine Geology 210:261–280. doi: 10.1016/j.margeo.2004.05.012 CrossRefGoogle Scholar
  13. Cooper JAG, Lemckert C (2012) Extreme sea-level rise and adaptation options for coastal resort cities: a qualitative assessment from the gold coast. Aust Ocean Coast Manag 64:1–14. doi: 10.1016/j.ocecoaman.2012.04.001 CrossRefGoogle Scholar
  14. Cooper JAG, Pilkey OH (2004) Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global Planet Chang 43:157–171. doi: 10.1016/j.gloplacha.2004.07.001 CrossRefGoogle Scholar
  15. Dasgupta S, Laplante B, Meisner C, Wheeler D, Yan J (2009) The impact of sea level rise on developing countries: a comparative analysis. Clim Change 93:379–388. doi: 10.1007/s10584-008-9499-5 CrossRefGoogle Scholar
  16. Dendoncker N, Rounsevell M, Bogaert P (2007) Spatial analysis and modelling of land use distributions in Belgium. Comput Environ Urban Syst 31:188–205. doi: 10.1016/j.compenvurbsys.2006.06.004 CrossRefGoogle Scholar
  17. Deng Y, Srinivasan S (2016) Urban land use change and regional access: a case study in Beijing. China Habitat Int 51:103–113. doi: 10.1016/j.habitatint.2015.09.007 CrossRefGoogle Scholar
  18. Dovers S (2009) Normalizing adaptation. Global Environ Change-Human Policy Dimens 19:4–6. doi: 10.1016/j.gloenvcha.2008.06.006 CrossRefGoogle Scholar
  19. Evans L, Milfont TL, Lawrence J (2014) Considering local adaptation increases willingness to mitigate. Glob Environ Chang 25:69–75. doi: 10.1016/j.gloenvcha.2013.12.013 CrossRefGoogle Scholar
  20. Fenster MS, Dolan R (1993) Historical shoreline trends along the outer banks, North Carolina: processes and responses. J Coast Res 9:172–188Google Scholar
  21. FitzGerald DM, Fenster MS, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Pl Sc 36:601–647. doi: 10.1146/annurev.earth.35.031306.140139 CrossRefGoogle Scholar
  22. Frazier TG, Wood N, Yarnal B (2010) Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida. Appl Geogr 30:506–517. doi: 10.1016/j.apgeog.2010.05.007 CrossRefGoogle Scholar
  23. Frihy OE, El-Sayed MK (2013) Vulnerability risk assessment and adaptation to climate change induced sea level rise along the Mediterranean coast of Egypt. Miti Adapt Strateg Glob Chang 18:1215–1237. doi: 10.1007/s11027-012-9418-y CrossRefGoogle Scholar
  24. Fu X, Gomaa M, Deng Y, Peng Z-R (2016) Adaptation planning for sea level rise: a study of US coastal cities. Journal of Environmental Planning and Management:1-17 doi: 10.1080/09640568.2016.1151771
  25. Geneletti D (2013) Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environ Impact Assess Rev 40:25–35. doi: 10.1016/j.eiar.2012.12.003 CrossRefGoogle Scholar
  26. Glavovic BC, Saunders WSA, Becker JS (2010) Land-use planning for natural hazards in New Zealand: the setting, barriers, 'burning issues' and priority actions. Nat Hazard 54:679–706. doi: 10.1007/s11069-009-9494-9 CrossRefGoogle Scholar
  27. Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011) Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222:3761–3772. doi: 10.1016/j.ecolmodel.2011.09.009 CrossRefGoogle Scholar
  28. Halmy MWA, Gessler PE, Hicke JA, Salem BB (2015) Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr 63:101–112CrossRefGoogle Scholar
  29. Hansen HS (2010) Modelling the future coastal zone urban development as implied by the IPCC SRES and assessing the impact from sea level rise. Landsc Urban Plan 98:141–149. doi: 10.1016/j.landurbplan.2010.08.018 CrossRefGoogle Scholar
  30. Hao C, Zhang J, Li H, Yao F, Huang H, Meng W (2015) Integration of multinomial-logistic and Markov-chain models to Derive land-use change dynamics. J Urban Plan Dev:141. doi: 10.1061/(asce)up.1943-5444.0000222
  31. Hsu C-H (2014) Hurricane surge flooding damage assessment and web-based game development to support K12 education for understanding climate change impact on hurricane surge flooding damage. Doctoral dissertation, Texas a & M UniversityGoogle Scholar
  32. Hu Z, Lo CP (2007) Modeling urban growth in Atlanta using logistic regression. Comput Environ Urban Syst 31:667–688. doi: 10.1016/j.compenvurbsys.2006.11.001 CrossRefGoogle Scholar
  33. Hurlimann A, Barnett J, Fincher R, Osbaldiston N, Mortreux C, Graham S (2014) Urban planning and sustainable adaptation to sea-level rise. Landsc Urban Plan 126:84–93. doi: 10.1016/j.landurbplan.2013.12.013 CrossRefGoogle Scholar
  34. Hurricanecity (2015) The history with tropical systems in Panama City, Florida http://www.hurricanecity.com/city/panamacity.htm. Accessed June 8 2015
  35. IPCC (2007) Climate change 2007: the physical science basis. Summary for PolicymakersGoogle Scholar
  36. Irish JL, Resio DT, Cialone MA (2009) A surge response function approach to coastal hazard assessment. Part 2: quantification of spatial attributes of response functions. Nat Hazards 51:183–205CrossRefGoogle Scholar
  37. Kabat P et al (2009) Dutch coasts in transition. Nat Geosci 2, 450:–452. doi: 10.1038/ngeo572
  38. Karim MF, Mimura N (2008) Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob Environ Chang 18:490–500. doi: 10.1016/j.gloenvcha.2008.05.002 CrossRefGoogle Scholar
  39. Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise Nature 504:53–60. doi: 10.1038/nature12856 Google Scholar
  40. Klijn F, Kreibich H, de Moel H, Penning-Rowsell E (2015) Adaptive flood risk management planning based on a comprehensive flood risk conceptualisation. Mitig Adapt Strateg Glob Chang 20:845–864. doi: 10.1007/s11027-015-9638-z CrossRefGoogle Scholar
  41. Knutson TR, Tuleya RE (2004) Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J Clim 17:3477–3495CrossRefGoogle Scholar
  42. Landis JR, Koch GG (1977) The Measurement of Observer Agreement for Categorical Data. Biometrics 33:159–174. doi: 10.2307/2529310 CrossRefGoogle Scholar
  43. Liao FHF, Wei YHD (2012) Modeling determinants of urban growth in Dongguan, China: a spatial logistic approach. Stochastic Environ Res Risk Assess 28:801–816. doi: 10.1007/s00477-012-0620-y CrossRefGoogle Scholar
  44. Lin Y, Deng X, Li X, Ma E (2014) Comparison of multinomial logistic regression and logistic regression: which is more efficient in allocating land use? Front Earth Sci 8:512–523. doi: 10.1007/s11707-014-0426-y CrossRefGoogle Scholar
  45. Luo J, Wei YHD (2009) Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landsc Urban Plan 91:51–64. doi: 10.1016/j.landurbplan.2008.11.010 CrossRefGoogle Scholar
  46. Measham TG, Preston BL, Smith TF, Brooke C, Gorddard R, Withycombe G, Morrison C (2011) Adapting to climate change through local municipal planning: barriers and challenges. Mitig Adapt Strateg Glob Chang 16:889–909. doi: 10.1007/s11027-011-9301-2 CrossRefGoogle Scholar
  47. Michalski F, Peres CA, Lake IR (2008) Deforestation dynamics in a fragmented region of southern Amazonia: evaluation and future scenarios. Environ Conserv 35:93–103CrossRefGoogle Scholar
  48. Mozumder C, Tripathi NK, Losiri C (2016) Comparing three transition potential models: a case study of built-up transitions in north-east India. Comput Environ Urban Syst 59:38–49. doi: 10.1016/j.compenvurbsys.2016.04.009 CrossRefGoogle Scholar
  49. Musa ZN, Popescu I, Mynett A (2016) Assessing the sustainability of local resilience practices against sea level rise impacts on the lower Niger delta. Ocean Coast Manag 130:221–228. doi: 10.1016/j.ocecoaman.2016.06.016 CrossRefGoogle Scholar
  50. Nakakaawa CA, Vedeld PO, Aune JB (2011) Spatial and temporal land use and carbon stock changes in Uganda: implications for a future REDD strategy. Mitig Adapt Strateg Glob Chang 16:25–62. doi: 10.1007/s11027-010-9251-0 CrossRefGoogle Scholar
  51. Nicholls RJ (2011) Planning for the Impacts of Sea Level Rise. Oceanography 24:144–157CrossRefGoogle Scholar
  52. Nicholls RJ et al (2011) Sea-level rise and its possible impacts given a 'beyond 4 degrees C world' in the twenty-first century. Philos Trans R Soc A Math Phys Eng Sci 369:161–181. doi: 10.1098/rsta.2010.0291 CrossRefGoogle Scholar
  53. Nicholls RJ, Mimura N (1998) Regional issues raised by sea-level rise and their policy implications. Clim Res 11:5–18CrossRefGoogle Scholar
  54. Nicholls RJ, Townend IH, Bradbury AP, Ramsbottom D, Day SA (2013) Planning for long-term coastal change: experiences from England and Wales. Ocean Eng 71:3–16. doi: 10.1016/j.oceaneng.2013.01.025 CrossRefGoogle Scholar
  55. Pilkey OH, Young RS, Riggs SR, Smith AS, Wu H, Pilkey WD (1993) The concept of shoreface profile of equilibrium: a critical review. Journal of Coastal Research:255–278Google Scholar
  56. Pontee N (2013) Defining coastal squeeze: a discussion. Ocean Coast Manag 84:204–207. doi: 10.1016/j.ocecoaman.2013.07.010 CrossRefGoogle Scholar
  57. Pulido-Leboeuf P (2004) Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Appl Geochem 19:1517–1527. doi: 10.1016/j.apgeochem.2004.02.004 CrossRefGoogle Scholar
  58. Rulleau B, Rey-Valette H (2017) Forward planning to maintain the attractiveness of coastal areas: Choosing between seawalls and managed retreat. Environ Sci Pol 72:12–19. doi: 10.1016/j.envsci.2017.01.009 CrossRefGoogle Scholar
  59. Sangermano F, Eastman JR, Zhu H (2010) Similarity weighted instance-based learning for the generation of transition potentials in land use change modeling. Transactions in GIS 14:569–580. doi: 10.1111/j.1467-9671.2010.01226.x CrossRefGoogle Scholar
  60. Santé I, García AM, Miranda D, Crecente R (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan 96:108–122. doi: 10.1016/j.landurbplan.2010.03.001 CrossRefGoogle Scholar
  61. Satterthwaite D (2008) Climate change and urbanization: effects and implications for urban governance. In: United Nations Expert Group meeting on population distribution, urbanization, internal migration and development, 2008. Citeseer, pp 21–23Google Scholar
  62. Shafizadeh-Moghadam H, Helbich M (2015) Spatiotemporal variability of urban growth factors: a global and local perspective on the megacity of Mumbai. Int J Appl Earth Obs 35, Part B:187-198 doi: 10.1016/j.jag.2014.08.013
  63. Shaw R, Mallick F, Islam A (2013) Climate change adaptation actions in Bangladesh. Springer,Google Scholar
  64. Siddiqui T (2017) Transforming migration: from threat to tool of adaptation http://www.thedailystar.net/environment-and-climate-action/threat-tool-adaptation-1367098. Accessed March 17 2017
  65. Smajgl A et al (2015) Responding to rising sea levels in the Mekong Delta. Nat Clim Chang 5:167–U167. doi: 10.1038/nclimate2469 CrossRefGoogle Scholar
  66. Snoussi M, Ouchani T, Niazi S (2008) Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: the case of the Mediterranean eastern zone. Estuar Coast Shelf Sci 77:206–213. doi: 10.1016/j.ecss.2007.09.024 CrossRefGoogle Scholar
  67. Song J, Fu X, Gu Y, Deng Y, Peng ZR (2017) An examination of land use impacts of flooding induced by sea level rise. Nat Hazard Earth Syst Sci 17:315–334. doi: 10.5194/nhess-17-315-2017 CrossRefGoogle Scholar
  68. Song J, Peng Z-R, Zhao L, Hsu C-H (2016) Developing a theoretical framework for integrated vulnerability of businesses to sea level rise. Natural Hazards:1-21 doi: 10.1007/s11069-016-2483-x
  69. Stive MJF, Fresco LO, Kabat P, Parmet B, Veerman CP (2011) How the Dutch plan to stay dry over the next century. Proc Inst Civ Eng Civ Eng 164:114–121. doi: 10.1680/cien.2011.164.3.114 Google Scholar
  70. Storbjörk S, Hedrén J (2011) Institutional capacity-building for targeting sea-level rise in the climate adaptation of Swedish coastal zone management. Lessons Coastby. Ocean Coast Manag 54:265–273. doi: 10.1016/j.ocecoaman.2010.12.007 CrossRefGoogle Scholar
  71. Takada T, Miyamoto A, Hasegawa S (2010) Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landsc Ecol 25:561–572. doi: 10.1007/s10980-009-9433-x CrossRefGoogle Scholar
  72. Thapa RB, Murayama Y (2012) Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc Urban Plan 105:140–148. doi: 10.1016/j.Landurbplan.2011.12.007 CrossRefGoogle Scholar
  73. Thieken AH, Cammerer H, Dobler C, Lammel J, Schöberl F (2016) Estimating changes in flood risks and benefits of non-structural adaptation strategies—case study from Tyrol, Austria. Mitig Adapt Strateg Glob Chang 21:343–376. doi: 10.1007/s11027-014-9602-3 CrossRefGoogle Scholar
  74. Tol RSJ, Klein RJT, Nicholls RJ (2008) Towards successful adaptation to sea-level rise along Europe's coasts. J Coast Res 24:432–442. doi: 10.2112/07a-0016.1 CrossRefGoogle Scholar
  75. U.S. Census Bureau (2015) Total Population in Bay County http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P1&prodType=table. Accessed June 8 2015
  76. Udoh IE (2012) Robust hurricane surge response functions. TEXAS A&M UNIVERSITY,Google Scholar
  77. UNPD (2011) Egypt's National Strategy for adaptation to climate change and disaster risk reductionGoogle Scholar
  78. VanKoningsveld M, Mulder J, Stive M, VanDerValk L, VanDerWeck A (2008) Living with sea-level rise and climate change: a case study of the Netherlands Journal of Coastal Research:367–379Google Scholar
  79. Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: current practice and research priorities. GeoJournal 61:309–324. doi: 10.1007/s10708-004-4946-y CrossRefGoogle Scholar
  80. Vermeiren K, Van Rompaey A, Loopmans M, Serwajja E, Mukwaya P (2012) Urban growth of Kampala, Uganda: pattern analysis and scenario development. Landsc Urban Plan 106:199–206. doi: 10.1016/j.landurbplan.2012.03.006 CrossRefGoogle Scholar
  81. Wu H, Ye L-P, Shi W-Z, Clarke KC (2014) Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int J Appl Earth Obs 32:67–78. doi: 10.1016/j.jag.2014.03.019 CrossRefGoogle Scholar
  82. Xu Y, McNamara P, Wu Y, Dong Y (2013) An econometric analysis of changes in arable land utilization using multinomial logit model in Pinggu district, Beijing, China. J Environ Manag 128:324–334. doi: 10.1016/j.jenvman.2013.05.020 CrossRefGoogle Scholar
  83. Yamamoto L, Esteban M (2010) Vanishing Island States and sovereignty. Ocean Coast Manag 53:1–9. doi: 10.1016/j.ocecoaman.2009.10.003 CrossRefGoogle Scholar
  84. Zhao L, Peng Z-R (2012) LandSys: an agent-based cellular automata model of land use change developed for transportation analysis. J Transp Geogr 25:35–49. doi: 10.1016/j.jtrangeo.2012.07.006 CrossRefGoogle Scholar
  85. Zheng HW, Shen GQ, Wang H, Hong J (2015) Simulating land use change in urban renewal areas: a case study in Hong Kong. Habitat Int 46:23–34. doi: 10.1016/j.habitatint.2014.10.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.College of Architecture and Urban PlanningChongqing UniversityChongqingChina
  2. 2.The Shimberg Center for Housing Studies, College of Design, Construction, and PlanningUniversity of FloridaGainesvilleUSA
  3. 3.Department of Urban and Regional PlanningUniversity of FloridaGainesvilleUSA
  4. 4.College of Architecture, Construction and PlanningThe University of Texas at San AntonioGainesvilleUSA

Personalised recommendations