Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat

  • Ricardo A. CorreiaEmail author
  • Miguel N. Bugalho
  • Aldina M. A. Franco
  • Jorge M. Palmeirim
Original Article


Climate change will impact forest ecosystems, their biodiversity and the livelihoods they sustain. Several adaptation and mitigation strategies to counteract climate change impacts have been proposed for these ecosystems. However, effective implementation of such strategies requires a clear understanding of how climate change will influence the future distribution of forest ecosystems. This study uses maximum entropy modelling (MaxEnt) to predict environmentally suitable areas for cork oak (Quercus suber) woodlands, a socio-economically important forest ecosystem protected by the European Union Habitats Directive. Specifically, we use two climate change scenarios to predict changes in environmental suitability across the entire geographical range of the cork oak and in areas where stands were recently established. Up to 40 % of current environmentally suitable areas for cork oak may be lost by 2070, mainly in northern Africa and southern Iberian Peninsula. Almost 90 % of new cork oak stands are predicted to lose suitability by the end of the century, but future plantations can take advantage of increasing suitability in northern Iberian Peninsula and France. The predicted impacts cross-country borders, showing that a multinational strategy, will be required for cork oak woodland adaptation to climate change. Such a strategy must be regionally adjusted, featuring the protection of refugia sites in southern areas and stimulating sustainable forest management in areas that will keep long-term suitability. Afforestation efforts should also be promoted but must consider environmental suitability and land competition issues.


Afforestation Climate change impacts Conservation planning Dehesa Environmental niche modelling Montado 



Fundação para a Ciência e Tecnologia (FCT) supported R. A. Correia through a PhD grant (SFRH/BD/66150/2009) and M. N. Bugalho through principal investigator contract (IF/01171/2014). We are thankful to Robert K. Dixon, Richard J. Ladle and four anonymous referees, whose comments helped to improve the initial version of the manuscript.

Supplementary material

11027_2017_9738_MOESM1_ESM.docx (15 kb)
Table S1 (DOCX 14 kb)
11027_2017_9738_MOESM2_ESM.docx (21 kb)
Table S2 (DOCX 20 kb)
11027_2017_9738_MOESM3_ESM.docx (382 kb)
Fig. S1 (DOCX 381 kb)
11027_2017_9738_MOESM4_ESM.docx (207 kb)
Fig. S2 (DOCX 206 kb)


  1. Aaheim A, Chaturvedi RK, Sagadevan AD (2011) Integrated modelling approaches to analysis of climate change impacts on forests and forest management. Mitig Adapt Strateg Glob Change 16:247–266CrossRefGoogle Scholar
  2. Acácio V, Dias FS, Catry FX et al (2016) Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. Glob Change Biol (in press). doi: 10.1111/gcb.13487 Google Scholar
  3. Acácio V, Holmgren M, Jansen PA et al (2007) Multiple recruitment limitation causes arrested succession in Mediterranean cork oak systems. Ecosystems 10:1220–1230CrossRefGoogle Scholar
  4. Afreen S, Sharma N, Chaturvedi RK et al (2011) Forest policies and programs affecting vulnerability and adaptation to climate change. Mitig Adapt Strateg Glob Change 16:177–197CrossRefGoogle Scholar
  5. Aitken SN, Yeaman S, Holliday JA et al (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111CrossRefGoogle Scholar
  6. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  7. Araujo MB, Alagador D, Cabeza M et al (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492CrossRefGoogle Scholar
  8. Attorre F, Alfo M, De Sanctis M et al (2011) Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl Veg Sci 14:242–255CrossRefGoogle Scholar
  9. Autoridade Florestal Nacional (2009) IF5 - Inventário Florestal Nacional de 2005/2006. Autoridade Florestal Nacional, Lisboa, PortugalGoogle Scholar
  10. Barbet-Massin M, Thuiller W, Jiguet F (2010) How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33:878–886CrossRefGoogle Scholar
  11. Barkhordarian A, von Storch H, Bhend J (2013) The expectation of future precipitation change over the Mediterranean region is different from what we observe. Clim Dynam 40:225–244CrossRefGoogle Scholar
  12. Barry P, Celles JC, Faurel L (1974) Carte International du Tapis Vegetal et des Conditions Écologiques (1/1 000 000) et notice explicative. Société d’Histoire Naturelle de l’Afrique du Nord, AlgérieGoogle Scholar
  13. Benayas JMR, Bullock JM, Newton AC (2008) Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Front Ecol Environ 6:329–336CrossRefGoogle Scholar
  14. Benito Garzon M, Sanchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178CrossRefGoogle Scholar
  15. Berrahmouni N, Escuté X, Regato P et al (2007) Beyond cork—a wealth of resources for people and nature. WWF Mediterranean, Rome, ItalyGoogle Scholar
  16. Berrahmouni N, Regato P, Ellatifi M et al (2009) Ecoregional planning for biodiversity conservation. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, USAGoogle Scholar
  17. Besson CK, Lobo-do-Vale R, Rodrigues ML et al (2014) Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agric For Meteorol 184:230–242CrossRefGoogle Scholar
  18. Bonfiglio A, Camaioni B, Coderoni S et al (2016) Where does EU money eventually go? The distribution of CAP expenditure across the European space. Empirica 43:693–727CrossRefGoogle Scholar
  19. Buckley LB, Urban MC, Angilletta MJ et al (2010) Can mechanism inform species' distribution models? Ecol Lett 13:1041–1054CrossRefGoogle Scholar
  20. Bugalho M, Plieninger T, Aronson J et al (2009) Open woodlands: a diversity of uses (and overuses). In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, USAGoogle Scholar
  21. Bugalho M, Silva LN (2014) Promoting sustainable management of cork oak landscapes through payments for ecosystem services: the WWF Green Heart of Cork project. Unasylva 242:29–30Google Scholar
  22. Bugalho MN, Caldeira MC, Pereira JS et al (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286CrossRefGoogle Scholar
  23. Bugalho MN, Dias FS, Brinas B et al (2016) Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes. Agroforest Syst 90:35–44CrossRefGoogle Scholar
  24. Caldeira MC, Ibanez I, Nogueira C et al (2014) Direct and indirect effects of tree canopy facilitation in the recruitment of Mediterranean oaks. J Appl Ecol 51:349–358CrossRefGoogle Scholar
  25. Caldeira MC, Lecomte X, David TS et al (2015) Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates. Sci Rep 5:15110CrossRefGoogle Scholar
  26. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457CrossRefGoogle Scholar
  27. Cavender-Bares J, Cortes P, Rambal S et al (2005) Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytol 168:597–611CrossRefGoogle Scholar
  28. Cook BI, Anchukaitis KJ, Touchan R et al (2016) Spatiotemporal drought variability in the Mediterranean over the last 900 years. J Geophys Res Atmos 121:2060–2074CrossRefGoogle Scholar
  29. Correia RA, Franco AMA, Palmeirim JM (2015a) Role of the Mediterranean Sea in differentiating European and North African woodland bird assemblages. Community Ecol 16:106–114CrossRefGoogle Scholar
  30. Correia RA, Haskell WC, Gill JA et al (2015b) Topography and aridity influence oak woodland bird assemblages in southern Europe. For Ecol Manag 354:97–103CrossRefGoogle Scholar
  31. Dale VH, Joyce LA, McNulty S et al (2001) Climate change and forest disturbances. Bioscience 51:723–734CrossRefGoogle Scholar
  32. de Bremond A, Engle NL (2014) Adaptation policies to increase terrestrial ecosystem resilience: potential utility of a multicriteria approach. Mitig Adapt Strateg Glob Change 19:331–354CrossRefGoogle Scholar
  33. de Dios VR, Fischer C, Colinas C (2007) Climate change effects on Mediterranean forests and preventive measures. New Forest 33:29–40CrossRefGoogle Scholar
  34. Dias FS, Bugalho MN, Cerdeira JO et al (2013) Is forest certification targeting areas of high biodiversity in cork oak savannas? Biodivers Conserv 22:93–112CrossRefGoogle Scholar
  35. Diáz M, Campos P, Pulido FJ (1997) The Spanish dehesas: a diversity in land-use and wildlife. In: Pain DJ, Pienkowski MW (eds) Farming and birds in Europe. Academic Press, Cambridge, UKGoogle Scholar
  36. Dirección General de Medio Natural y Política Forestal (2009) Mapa Forestal de España, Escala 1:200.000. Ministerio de Medio Ambiente, y Medio Rural y Marino, Madrid, EspañaGoogle Scholar
  37. Doblas-Miranda E, Martinez-Vilalta J, Lloret F et al (2015) Reassessing global change research priorities in Mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Glob Ecol Biogeogr 24:25–43CrossRefGoogle Scholar
  38. Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035CrossRefGoogle Scholar
  39. Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46CrossRefGoogle Scholar
  40. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  41. ESRI (2011) ArcGIS Desktop: release 10. Environmental Systems Research Institute, Redlands, California, USAGoogle Scholar
  42. FAO/IIASA/ISRIC/ISS-CAS/JRC (2012) Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, AustriaGoogle Scholar
  43. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707CrossRefGoogle Scholar
  44. Godinho S, Guiomar N, Machado R et al (2016) Assessment of environment, land management, and spatial variables on recent changes in montado land cover in southern Portugal. Agroforest Syst 90:177–192CrossRefGoogle Scholar
  45. Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification (2005) Inventaire Foréstier National. Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification, Rabat, MarocGoogle Scholar
  46. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32CrossRefGoogle Scholar
  47. Hidalgo PJ, Marin JM, Quijada J et al (2008) A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. For Ecol Manag 255:25–34CrossRefGoogle Scholar
  48. Hijmans RJ (2015) Raster: geographic data analysis and modeling. R package version 2:5–2Google Scholar
  49. Hijmans RJ, Philips S, Leathwick J, Elith J (2015) dismo: species distribution modeling. R package version 1.0–12Google Scholar
  50. Hutchinson M, Xu T, Houlder D et al. (2009) ANUCLIM 6.0 user’s guide. Australian National University, Fenner School of Environment and SocietyGoogle Scholar
  51. Institut National de l’Information Géographique et Forestiére (2010) Inventaire Forestier Nationale. Institut National de l’Information Géographique et Forestiére, Saint-Mandé, FranceGoogle Scholar
  52. Jimenez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol 31:361–369CrossRefGoogle Scholar
  53. Jimenez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890CrossRefGoogle Scholar
  54. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol Lett 12:334–350CrossRefGoogle Scholar
  55. Khaldi A (2004) Carte de repartition du chêne liege en Tunisie. Elaborée d’après IFPN-DGF, 1995Google Scholar
  56. Klausmeyer KR, Shaw MR (2009) Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS One 4:e6392CrossRefGoogle Scholar
  57. Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295CrossRefGoogle Scholar
  58. Leal AI, Correia RA, Granadeiro JP et al (2011) Impact of cork extraction on birds: relevance for conservation of Mediterranean biodiversity. Biol Conserv 144:1655–1662CrossRefGoogle Scholar
  59. Linares AM (2007) Forest planning and traditional knowledge in collective woodlands of Spain: the dehesa system. For Ecol Manag 249:71–79CrossRefGoogle Scholar
  60. Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manag 259:698–709CrossRefGoogle Scholar
  61. Lunda HG, Iremonger S (2000) Omissions, commissions, and decisions: the need for integrated resource assessments. For Ecol Manag 128:3–10CrossRefGoogle Scholar
  62. Merow C, Smith MJ, Edwards TC et al (2014) What do we gain from simplicity versus complexity in species distribution models? Ecography 37:1267–1281CrossRefGoogle Scholar
  63. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069CrossRefGoogle Scholar
  64. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151CrossRefGoogle Scholar
  65. Muscarella R, Galante PJ, Soley-Guardia M et al (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol Evol 5:1198–1205CrossRefGoogle Scholar
  66. New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901-96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238CrossRefGoogle Scholar
  67. Nyong A, Adesina F, Osman Elasha B (2007) The value of indigenous knowledge in climate change mitigation and adaptation strategies in the African Sahel. Mitig Adapt Strateg Glob Change 12:787–797CrossRefGoogle Scholar
  68. Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wires Clim Change 5:317–335CrossRefGoogle Scholar
  69. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669CrossRefGoogle Scholar
  70. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  71. Pausas JG, Pereira JS, Aronson J (2009) The tree. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, USAGoogle Scholar
  72. Pereira H (2007) The Cork oak. In: Pereira H (ed) Cork: biology, production and uses. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  73. Pereira H, Tomé M (2004) Cork oak. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest sciences. Elsevier, Oxford, UKGoogle Scholar
  74. Plieninger T, Rolo V, Moreno G (2010) Large-scale patterns of Quercus ilex, Quercus suber, and Quercus pyrenaica regeneration in Central-Western Spain. Ecosystems 13:644–660CrossRefGoogle Scholar
  75. Pons J, Pausas JG (2006) Oak regeneration in heterogeneous landscapes: the case of fragmented Quercus suber forests in the eastern Iberian Peninsula. Forest Ecol Manag 231:196–204CrossRefGoogle Scholar
  76. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  77. Ravindranath NH (2007) Mitigation and adaptation synergy in forest sector. Mitig Adapt Strateg Glob Change 12:843–853CrossRefGoogle Scholar
  78. Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274–281CrossRefGoogle Scholar
  79. Rowland EL, Davison JE, Graumlich LJ (2011) Approaches to evaluating climate change impacts on species: a guide to initiating the adaptation planning process. Environ Manag 47:322–337CrossRefGoogle Scholar
  80. Salinas CX, Mendieta J (2013a) The cost of mitigation strategies for agricultural adaptation to global change. Mitig Adapt Strateg Glob Change 18:933–941CrossRefGoogle Scholar
  81. Salinas CX, Mendieta J (2013b) Effectiveness of the strategies to combat land degradation and drought. Mitig Adapt Strateg Glob Change 18:1269–1281CrossRefGoogle Scholar
  82. Santos MJ, Thorne JH (2010) Comparing culture and ecology: conservation planning of oak woodlands in Mediterranean landscapes of Portugal and California. Environ Conserv 37:155–168CrossRefGoogle Scholar
  83. Scarascia-Mugnozza G, Oswald H, Piussi P et al (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecol Manag 132:97–109CrossRefGoogle Scholar
  84. Schmitt P (2016) Trial plantation to slash cork growing times. The Drinks Business. Cited 24 Nov 2016
  85. Serrasolses I, Pérez-Devesa M, Vilagrosa A et al (2009) Soil properties constraining cork oak distribution. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, USAGoogle Scholar
  86. Settele J, Scholes R, Betts R et al (2014) Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  87. Stocker TF, Qin D, Plattner G-K et al. (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK and New York, USAGoogle Scholar
  88. Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Glob Ecol Biogeogr 20:904–914CrossRefGoogle Scholar
  89. Thuiller W, Brotons L, Araujo MB et al (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172CrossRefGoogle Scholar
  90. Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349:814–818CrossRefGoogle Scholar
  91. Vessella F, Schirone B (2013) Predicting potential distribution of Quercus suber in Italy based on ecological niche models: conservation insights and reforestation involvements. Forest Ecol Manag 304:150–161CrossRefGoogle Scholar
  92. Walck JL, Hidayati SN, Dixon KW et al (2011) Climate change and plant regeneration from seed. Glob Chang Biol 17:2145–2161CrossRefGoogle Scholar
  93. Winkel G, Sotirov M (2016) Whose integration is this? European forest policy between the gospel of coordination, institutional competition, and a new spirit of integration. Environ Plann C 34:496–514CrossRefGoogle Scholar
  94. Zomer RJ, Trabucco A, Bossio DA et al (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ricardo A. Correia
    • 1
    • 2
    • 3
    • 4
    Email author
  • Miguel N. Bugalho
    • 5
  • Aldina M. A. Franco
    • 2
  • Jorge M. Palmeirim
    • 1
  1. 1.Centre for Ecology, Evolution and Environmental Change (cE3c), Department of Animal Biology, Faculty of SciencesUniversity of LisbonLisbonPortugal
  2. 2.School of Environmental SciencesUniversity of East AngliaNorwichUK
  3. 3.Institute of Biological Sciences and HealthFederal University of AlagoasMaceióBrazil
  4. 4.School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  5. 5.Centre for Applied Ecology “Prof. Baeta Neves”(CEABN-InBio), School of AgricultureUniversity of LisbonLisbonPortugal

Personalised recommendations