The cost of stratospheric climate engineering revisited

Original Article

Abstract

Stratospheric aerosol injection (SAI) has been receiving increasing attention as a possible option for climate engineering. Its direct cost is perceived to be low, which has implications for international governance of this emerging technology. Here, we critically synthesize previous estimates of the underlying parameters and examine the total costs of SAI. It is evident that there have been inconsistencies in some assumptions and the application of overly optimistic parameter values in previous studies, which have led to an overall underestimation of the cost of aircraft-based SAI with sulfate aerosols. The annual cost of SAI to achieve cooling of 2 W/m2 could reach US$10 billion with newly designed aircraft, which contrasts with the oft-quoted estimate of “a few billion dollars.” If existing aircraft were used, the cost would be expected to increase further. An SAI operation would be a large-scale engineering undertaking, possibly requiring a fleet of approximately 1,000 aircraft, because of the required high altitude of the injection. Therefore, because of its significance, a more thorough investigation of the engineering aspects of SAI and the associated uncertainties is warranted.

Keywords

Climate change Cost analysis Geoengineering Global warming Solar radiation management 

References

  1. Barrett S (2008) The incredible economics of geoengineering. Environ Resour Econ 39(1):45–54CrossRefGoogle Scholar
  2. Barrett S (2014) Solar Geoengineering’s brave new world: thoughts on the governance of an unprecedented technology. Rev Environ Econ Policy 8(2):249–269. doi:10.1093/reep/reu011 CrossRefGoogle Scholar
  3. Blackstock J, Steinbruner J, Cohen A (2013) Climate change series: the geoengineering debate. http://cognoscenti.wbur.org/2013/04/26/climate-geoengineering-blackstock-steinbruner-cohenGoogle Scholar
  4. Blackstock JJ, Battisti D, Caldeira K et al (2009) Climate engineering responses to climate emergencies. Novim, archived online at: http://arxiv.org/pdf/0907.5140Google Scholar
  5. Bodansky D (2011) Governing climate engineering: scenarios for analysis. Discussion Paper 2011–47, Cambridge, Mass.: Harvard Project on Climate AgreementsGoogle Scholar
  6. Boeing Defense Space & Security (2013) Backgrounder: F-15E Strike Eagle. http://www.boeing.com/assets/pdf/defense-space/military/f15/docs/F-15SE_overview.pdfGoogle Scholar
  7. Budyko MI (1977) Climatic changes. American Geophysical Union, Washington DCGoogle Scholar
  8. Caldeira K, Keith DW (2010) The need for climate engineering research. Issues Sci Technol Fall 2010:57–62Google Scholar
  9. Caviezel C, Revermann C (2014) Climate engineering: Kann und soll man die Erderwarmung technisch eindammen? Statew Agric L Use Baseline 2015. doi:10.1017/CBO9781107415324.004
  10. Collins A (2014) Andrew Parker: uncertainties and implications of geoengineering. In: Belfer Cent. http://belfercenter.ksg.harvard.edu/publication/23930/andrew_parker.htmlGoogle Scholar
  11. Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Chang 77:211–219. doi:10.1007/s10584-006-9101-y CrossRefGoogle Scholar
  12. Davidson P, Burgoyne C, Hunt H, Causier M (2012) Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems. Philos Trans A Math Phys Eng Sci 370:4263–4300. doi:10.1098/rsta.2011.0639 CrossRefGoogle Scholar
  13. Davies S, Dildy D (2007) F-15 eagle engaged: the world’s most successful jet fighter. Osprey Publishing Limited, Oxford, UKGoogle Scholar
  14. Dykema JA, Keith DW, Keutsch FN (2016) Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment. Gephys Res Lett 43(14):7758–7766. doi:10.1002/2016GL069258 CrossRefGoogle Scholar
  15. English JM, Toon OB, Mills MJ (2012) Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering. Atmos Chem Phys 12:4775–4793. doi:10.5194/acp-12-4775-2012 CrossRefGoogle Scholar
  16. Flyvbjerg B, Skamris Holm MK, Buhl SL (2004) What causes cost overrun in transport infrastructure projects? Transp Rev 24:3–18. doi:10.1080/0144164032000080494a CrossRefGoogle Scholar
  17. Forbes (2015) The world’s billionaires. http://www.forbes.com/billionaires/list/Google Scholar
  18. Foundation Center (2014) Top 100 U.S. foundations by asset size. http://foundationcenter.org/findfunders/topfunders/top100assets.htmlGoogle Scholar
  19. Fuss S, Canadell JG, Peters GP, et al. (2014) Betting on negative emissions. Nat Clim Chang 4:850–853CrossRefGoogle Scholar
  20. Gingrich N (2008) Stop the green pig: defeat the Boxer–Warner–Lieberman Green Pork Bill capping American jobs and trading America’s future (Newt Direct Blog, June 3, 2008). http://www.newt.org/newt-direct/stop-green-pig-defeat-boxer-warner-lieberman-green-pork-bill-capping-american-jobs-and-tGoogle Scholar
  21. GlobalSecurity.org (2011) F15 Eagle production/inventory. http://www.globalsecurity.org/military/systems/aircraft/f15productionGoogle Scholar
  22. Gregory JM, Ingram WJ, Palmer MA, et al. (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi:10.1029/2003GL018747 Google Scholar
  23. Hamilton C (2013) Earthmasters: the dawn of the age of climate engineering. Yale University Press, New Haven and LondonGoogle Scholar
  24. Heckendorn P, Weisenstein D, Fueglistaler S, et al. (2009) The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ Res Lett 4:045108. doi:10.1088/1748-9326/4/4/045108 CrossRefGoogle Scholar
  25. Holton JR, Haynes PH, McIntyre ME, et al. (1995) Stratosphere–troposhere exchange. Rev Geophys 33:403–439CrossRefGoogle Scholar
  26. Horton JB (2011) Geoengineering and the myth of unilateralism: pressures and prospects for international cooperation. Stanford J Law Sci Policy IV:56–69Google Scholar
  27. Hulme M (2014) Can science fix climate change?: a case against climate engineering. Polity Press, Cambridge, UKGoogle Scholar
  28. International Civil Aviation Organization (1993) Manual of the ICAO standard atmosphere: extended to 80 kilometres (262 500 feet). Int. Civil Aviation Org, Montreal, QuebecGoogle Scholar
  29. Irvine PJ, Kravitz B, Lawrence MG, Muri H (2016) An overview of the earth system science of solar geoengineering. WIREs Clim Change. doi:10.1002/wcc.423 Google Scholar
  30. Jahren CT, Ashe AM (1990) Predictors of cost-overrun rates. J Constr Eng Manag 116:548–552. doi:10.1061/(ASCE)0733-9364(1990)116:3(548) CrossRefGoogle Scholar
  31. Jones A, Haywood J, Boucher O, et al. (2010) Geoengineering by stratospheric SO2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE. Atmos Chem Phys 10:5999–6006. doi:10.5194/acp-10-5999-2010 CrossRefGoogle Scholar
  32. Jones A, Haywood J, Jones A (2016) Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection. Atmos Chem Phys 16:2843–2862. doi:10.5194/acp-16-2843-2016 CrossRefGoogle Scholar
  33. Katz JI (2010) Stratospheric albedo modification. Energy Environ Sci 3:1634–1644. doi:10.1039/c002441d CrossRefGoogle Scholar
  34. Keith DW (2000) Geoengineering the climate: history and prospect. Annu Rev Energy Environ 25:245–284CrossRefGoogle Scholar
  35. Keith DW (2010) Photophoretic levitation of engineered aerosols for geoengineering. Proc Natl Acad Sci U S A 107:16428–16431. doi:10.1073/pnas.1009519107 CrossRefGoogle Scholar
  36. Keith DW (2013) A case for climate engineering. The MIT Press, Cambridge, MAGoogle Scholar
  37. Keith DW, MacMartin DG (2015) A temporary, moderate and responsive scenario for solar geoengineering. Nat Clim Chang 5:201–206. doi:10.1038/nclimate2493 CrossRefGoogle Scholar
  38. Keith DW, Parson E, Morgan MG (2010) Research on global sun block needed now. Nature 463:426–427. doi:10.1038/463426a CrossRefGoogle Scholar
  39. Klepper G, Rickels W (2011) Climate engineering, Wirtschaftliche AspekteGoogle Scholar
  40. Klepper G, Rickels W (2014) Climate engineering: economic considerations and research challenges. Rev Environ Econ Policy 8:270–289. doi:10.1093/reep/reu010 CrossRefGoogle Scholar
  41. Kravitz B (2013) Climate engineering with stratospheric aerosols and associated engineering parameters. In: Frontiers of engineering: reports on leading-edge engineering from the 2012 symposium. The National Academies Press, Washington DCGoogle Scholar
  42. Kravitz B, Caldeira K, Boucher O, et al. (2013) Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res Atmos 118:8320–8332. doi:10.1002/jgrd.50646 CrossRefGoogle Scholar
  43. Kravitz B, Robock A, Boucher O, et al. (2011a) The Geoengineering Model Intercomparison Project (GeoMIP). Atmos Sci Lett 12:162–167. doi:10.1002/asl.316 CrossRefGoogle Scholar
  44. Kravitz B, Robock A, Boucher O et al (2011b) Specifications for GeoMIP experiments G1 through G4. Version 1.0Google Scholar
  45. Lenton TM, Vaughan NE (2009) The radiative forcing potential of different climate geoengineering options. Atmos Chem Phys 9:5539–5561. doi:10.5194/acp-9-5539-2009 CrossRefGoogle Scholar
  46. MacMartin DG, Caldeira K, Keith DW (2014) Solar geoengineering to limit the rate of temperature change. Philos Trans R Soc A 372:20140134. doi:10.1098/rsta.2014.0134 CrossRefGoogle Scholar
  47. McClellan J, Keith DW, Apt J (2012) Cost analysis of stratospheric albedo modification delivery systems. Environ Res Lett 7:034019. doi:10.1088/1748-9326/7/3/034019 CrossRefGoogle Scholar
  48. Michaelson J (2013) Geoengineering and climate management: from marginality to inevitability. In: Climate change geoengineering: philosophical perspectives, legal issues, and governance frameworks. Cambridge University Press, Cambridge, UKGoogle Scholar
  49. Morton O (2008) AGU: Geoengineering costs. http://blogs.nature.com/inthefield/2008/12/agu_cities_as_carbon_sinks.htmlGoogle Scholar
  50. Moss RH, Edmonds JA, Hibbard KA, et al. (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 CrossRefGoogle Scholar
  51. Myhre G, Shindell D, Bréon F-M et al (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Dahe Q, Plattner, G-K, et al (eds) Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang. Cambridge University Press, Cambridge, UK, pp 659–740Google Scholar
  52. National Research Council (2015) Climate intervention: reflecting sunlight to cool earth. The National Academies Press, Washington DCGoogle Scholar
  53. Nemet GF, Kammen DM (2007) U.S. energy research and development: declining investment, increasing need, and the feasibility of expansion. Energy Policy 35:746–755. doi:10.1016/j.enpol.2005.12.012 CrossRefGoogle Scholar
  54. Niemeier U, Timmreck C (2015) What is the limit of climate engineering by stratospheric injection of SO2? Atmos Chem Phys 15:9129–9141. doi:10.5194/acp-15-9129-2015 CrossRefGoogle Scholar
  55. Niemeier U, Schmidt H, Timmreck C (2011) The dependency of geoengineered sulfate aerosol on the emission strategy. Atmos Sci Lett 12:189–194. doi:10.1002/asl.304 CrossRefGoogle Scholar
  56. Panel on Policy Implications of Greenhouse Warming (1992) Policy implications of greenhouse warming: mitigation, adaptation, and the science base. Press, Washington DC, Natl. AcadGoogle Scholar
  57. Parson EA, Ernst LN (2013) International governance of climate engineering. Theor Inq Law 14:307–337. doi:10.1515/til-2013-015 Google Scholar
  58. Pierce JR, Weisenstein DK, Heckendorn P, et al. (2010) Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophys Res Lett 37:L18805. doi:10.1029/2010GL043975 CrossRefGoogle Scholar
  59. Pope FD, Braesicke P, Grainger RG, et al. (2012) Stratospheric aerosol particles and solar-radiation management. Nat Clim Chang 2:713–719. doi:10.1038/NCLIMATE1528 CrossRefGoogle Scholar
  60. Preston CJ (2013) Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. WIREs Clim Change 4(1):23–37. doi:10.1002/wcc.198 CrossRefGoogle Scholar
  61. Rasch PJ, Crutzen PJ, Coleman DB (2008) Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys Res Lett 35:L02809. doi:10.1029/2007GL032179 CrossRefGoogle Scholar
  62. Rickels W, Klepper G, Dovern J et al (2011) Large-scale intentional interventions into the climate system? Assessing the climate engineering debate. Scoping report conducted on behalf of the German Federal Ministry of Education and Research (BMBF), Kiel Earth Institute, KielGoogle Scholar
  63. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  64. Robock A (2008) 20 Reasons why geoengineering may be a bad idea. Bull At Sci 64:14–18. doi:10.2968/064002006 CrossRefGoogle Scholar
  65. Robock A (2014) A case against climate engineering. In: Huffpost Sci. http://www.huffingtonpost.com/alan-robock/a-case-against-climate-engineering_b_5264200.html?view=print&comm_ref=falseGoogle Scholar
  66. Robock A, Marquardt A, Kravitz B, Stenchikov G (2009) Benefits, risks, and costs of stratospheric geoengineering. Geophys Res Lett 36:L19703. doi:10.1029/2009GL039209 CrossRefGoogle Scholar
  67. Robock A, Oman L, Stenchikov GL (2008) Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res 113:D16101. doi:10.1029/2008JD010050 CrossRefGoogle Scholar
  68. Royal Society (2009) Geoengineering the climate: science, governance and uncertainty. Royal Society, LondonGoogle Scholar
  69. Salter S, Sortino G, Latham J (2008) Sea-going hardware for the cloud albedo method of reversing global warming. Philos Trans A Math Phys Eng Sci 366:3989–4006. doi:10.1098/rsta.2008.0136 CrossRefGoogle Scholar
  70. Sanderson BM, O’Neill B, Tebaldi C (2016) What would it take to achieve the Paris temperature targets? Geophys Res Lett:1–10. doi:10.1002/2016GL069563
  71. Smith P, Davis SJ, Creutzig F, et al. (2016) Biophysical and economic limits to negative CO2 emissions. Nat Clim Chang 6:42–50 10.1038/nclimate2870\rhttp://www.nature.com/nclimate/journal/v6/n1/abs/nclimate2870.html#supplementary-informationCrossRefGoogle Scholar
  72. Stilgoe J (2015) Experiment earth: responsible innovation in geoengineering. Routledge, Abingdon, Oxon and New York, NYGoogle Scholar
  73. Stocker T et al. (2013) IPCC 2013: Summary for policy makers. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New YorkGoogle Scholar
  74. Stockholm International Peace Research Institute (SIPRI) (2014) SIPRI Military Expenditure Database. http://milexdata.sipri.org/Google Scholar
  75. Teller E, Wood L, Hyde R (1997) Global warming and ice ages: I. Prospects for physics-based modulation of global change. UCRL-231636/UCRL JC 128715. Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  76. Thomason L, Peter T (2006) Assessment of stratospheric aerosol properties (ASAP), WCRP-124 WMO/TD- No. 1295/SPARC Report No. 4. Toronto, OntarioGoogle Scholar
  77. Tilmes S, Sanderson BM, O’Neill B (2016) Climate impacts of geoengineering in a delayed mitigation scenario. Geophys Res Lett. doi:10.1002/2016GL070122 Google Scholar
  78. United Kingdom Treasury (2003) The Green Book: appraisal and evaluation in central government. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/220541/green_book_complete.pdfGoogle Scholar
  79. United States Government Accountability Office (2011) Climate engineering: technical status, future directions, and potential responsesGoogle Scholar
  80. Victor DG, Morgan MG, Apt J, et al. (2009) The geoengineering option—a last resort against global warming? Foreign Aff 88:64–76Google Scholar
  81. Weisenstein DK, Keith DW, Dykema JA (2015) Solar geoengineering using solid aerosol in the stratosphere. Atmos Chem Phys 15:11835–11859. doi:10.5194/acp-15-11835-2015 CrossRefGoogle Scholar
  82. Weitzman ML (2015) A voting architecture for the governance of free-driver externalities, with application to geoengineering. Scand J Econ 117(4):1049–1068. doi:10.1111/sjoe.12120 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ryo Moriyama
    • 1
  • Masahiro Sugiyama
    • 2
  • Atsushi Kurosawa
    • 1
  • Kooiti Masuda
    • 3
  • Kazuhiro Tsuzuki
    • 1
  • Yuki Ishimoto
    • 1
  1. 1.The Institute of Applied EnergyTokyoJapan
  2. 2.Policy Alternatives Research InstituteThe University of TokyoTokyoJapan
  3. 3.Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokohamaJapan

Personalised recommendations