Development of a new model for the simulation of N2O emissions: a case-study on wheat cropping systems under humid Mediterranean climate

  • P. Gallejones
  • A. Aizpurua
  • M.A. Ortuzar-Iragorri
  • A. del Prado
Original Article

Abstract

Improving the quantification of nitrous oxide (N2O) emissions from agricultural land has become an issue of major concern due to its strong contribution to the greenhouse effect and to the fact that N2O is now the most significant ozone-depleting emission to the atmosphere. The aim of this paper is to describe the development of a new field-scale, simple and empirical model that simulates monthly nitrogen (N) flows in cropping systems based on site characteristics and management practices. We explored its sensitivity for a Basque region of Spain growing winter wheat (Triticum aestivum L.) under humid Mediterranean conditions to varied weather conditions and different scenarios of: (i) fertiliser rates, (ii) soil texture, (iii) organic/mineral fertilisation, (iv) slurry injection/no injection and (v) tillage/no tillage. The model showed sensitivity to most of the changes in the tested parameters. On average, simulated N2O emissions decreased: (i) with the decrease in N fertiliser rates, (ii) in lighter textured soils, (iii) with organic fertilisation, (iv) after non-injecting slurry and (v) under no-tillage. The model showed that it could be useful to simulate some of the potential trade-offs that may occur after implementation of specific N pollution mitigation measures (e.g. trade-offs in crop productivity and ammonia (NH3) volatilisation after implementation of measures that target a reduction in N2O emissions). In a validation exercise, simulated and measured yield and soil moisture showed reasonable agreement. Although the model showed discrepancies for monthly-averaged N2O fluxes, the peak after fertilisation application was reasonably well simulated. These results and the simplicity and user-friendliness of the model suggest that its structure is appropriate and, if properly calibrated for different soil types and weather conditions, it could be a useful model to be used in carbon footprint studies or to develop site-specific emission factors for current or future climatic scenarios.

Keywords

Climate change mitigation Empirical Modelling N2O emissions Nitrogen Wheat 

Notes

Acknowledgments

The authors would like to thank the Spanish National R + D + i Plan (CGL2009–10,176, AGL2012–37,815–C05–04) and Department of Education, Universities and Research of the Basque Country (PC2010–33A).

References

  1. Aguilera E, Lassaletta L, Sanz-Cobena A, Garnier J, Vallejo A (2013) The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric Ecosyst Environ 164:32–52CrossRefGoogle Scholar
  2. Alcoz MM, Hons FM, Haby VA (1993) Nitrogen fertilization timing effect on wheat production, nitrogen uptake efficiency, and residual soil nitrogen. Agron J 85(6):1198–1203CrossRefGoogle Scholar
  3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Water Resources, Development and Management Service, Rome, 300 ppGoogle Scholar
  4. Alley MM, Scharf P, Brann DE, Baethgen WE, Hammons JL (2009) Nitrogen management for winter wheat: Principles and recommendations. V Coop Ext Pub 424–026Google Scholar
  5. Arregui LM, Quemada M (2006) Drainage and nitrate leaching in a crop rotation under different N-fertilizer strategies: Application of capacitance probes. Plant Soil 288(1–2):57–69CrossRefGoogle Scholar
  6. Arregui LM, Quemada M (2008) Strategies to improve nitrogen use efficiency in winter cereal crops under rainfed conditions. Agron J 100(2):277–284CrossRefGoogle Scholar
  7. Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41(6):379–388CrossRefGoogle Scholar
  8. Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob Biogeochem Cycles 16(4):1058Google Scholar
  9. Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet J-M, Meynard JM, Delécolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I Theory and parameterization applied to wheat and corn. Agron 18(5–6):311–346CrossRefGoogle Scholar
  10. Brown L, Scholefield D, Jewkes EC, Lockyer DR, del Prado A (2005) NGAUGE: a decision support system to optimise N fertilisation of British grassland for economic and environmental goals. Agric Ecosyst Environ 109(1–2):20–39CrossRefGoogle Scholar
  11. Bruinsma J (2009) The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050? FAO—Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  12. Burton DL, Zebarth BJ, Gillam KM, MacLeod JA (2008) Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can J Soil Sci 88(2):229–239CrossRefGoogle Scholar
  13. Cardenas LM, Cuttle SP, Crabtree B, Hopkins A, Shepherd A, Scholefield D, del Prado A (2011) Cost effectiveness of nitrate leaching mitigation measures for grassland livestock systems at locations in England and Wales. Sci Total Environ 409(6):1104–1115CrossRefGoogle Scholar
  14. Castellón A, Villar N, Besga G, Aizpurua A (2013) ¿Cómo afecta la fertilización orgánica a la producción y calidad de grano de trigo blando de invierno? Lurzabal 25:10–13Google Scholar
  15. Chadwick DR, John F, Pain BF, Chambers BJ, Williams J (2000) Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment. J Agric Sci 134(2):159–168CrossRefGoogle Scholar
  16. Chambers BJ, Lord EI, Nicholson FA, Smith KA (1999) Predicting nitrogen availability and losses following application of organic manures to arable land: Manner. Soil Use Manag 15(3):137–143CrossRefGoogle Scholar
  17. Cookson WR, Beare MH, Wilson PE (1998) Effects of prior crop residue management on microbial properties and crop residue decomposition. Appl Soil Ecol 7(2):179–188CrossRefGoogle Scholar
  18. Davidson EA, Matson PA, Vitousek PM, Riley R, Dunkin K, Garcia-Mendez G, Maass JM (1993) Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74(1):130–139CrossRefGoogle Scholar
  19. Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50(8):667–680CrossRefGoogle Scholar
  20. del Prado A, Brown L, Schulte R, Ryan M, Scholefield D (2006a) Principles of development of a mass balance n cycle model for temperate grasslands: An irish case study. Nutr Cycl Agroecosyst 74(2):115–131CrossRefGoogle Scholar
  21. del Prado A, Merino P, Estavillo JM, Pinto M, González-Murua C (2006b) N2O and NO emissions from different N sources and under a range of soil water contents. Nutr Cycl Agroecosyst 74(3):229–243CrossRefGoogle Scholar
  22. del Prado A, Chadwick D, Cardenas L, Misselbrook T, Scholefield D, Merino P (2010) Exploring systems responses to mitigation of GHG in UK dairy farms. Agric Ecosyst Environ 136(3–4):318–332CrossRefGoogle Scholar
  23. Delogu G, Cattivelli L, Pecchioni N, De Falcis D, Maggiore T, Stanca AM (1998) Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. Eur J Agron 9(1):11–20CrossRefGoogle Scholar
  24. Dosch P, Gutser R (1995) Reducing N losses (NH3, N2O, N2) and immobilization from slurry through optimized application techniques. Fertil Res 43(1–3):165–171Google Scholar
  25. Errebhi M, Rosen CJ, Gupta SC, Birong DE (1998) Potato yield response and nitrate leaching as influenced by nitrogen management. Agron J 90(1):10–15CrossRefGoogle Scholar
  26. Feibert EBG, Shock CC, Saunders LD (1998) Nitrogen fertilizer requirements of potatoes using carefully scheduled sprinkler irrigation. HortSci 33(2):262–265Google Scholar
  27. Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, AvdP-v D, Soussana JF, Jones M, Clifton-Brown J, Raschi A, Horvath L, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J, Calanca P, Thalman E, Pilegaard K, Di Marco C, Campbell C, Nemitz E, Hargreaves KJ, Levy PE, Ball BC, Jones SK, van de Bulk WCM, Groot T, Blom M, Domingues R, Kasper G, Allard V, Ceschia E, Cellier P, Laville P, Henault C, Bizouard F, Abdalla M, Williams M, Baronti S, Berretti F, Grosz B (2007) Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agric Ecosyst Environ 121(1–2):135–152CrossRefGoogle Scholar
  28. Flowers MD, Lutcher LK, Corp MK, Brown B (2007) Managing nitrogen for yield and protein in hard wheat. Oregon State University, FS, 335Google Scholar
  29. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge University Press, CambridgeGoogle Scholar
  30. Gallejones P, Castellon A, del Prado A, Unamunzaga O, Aizpurua A (2012) Nitrogen and sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat-rapeseed rotation under a humid Mediterranean climate. Nutr Cycl Agroecosyst 93(3):337–355CrossRefGoogle Scholar
  31. Garabet S, Ryan J, Wood M (1998a) Nitrogen and water effects on wheat yield in a Mediterranean-type climate. II Fertilizer-use efficiency with labelled nitrogen. Field Crop Res 58(3):213–221CrossRefGoogle Scholar
  32. Garabet S, Wood M, Ryan J (1998b) Nitrogen and water effects on wheat yield in a Mediterranean-type climate: I. Growth, water-use and nitrogen accumulation. Field Crop Res 57(3):309–318CrossRefGoogle Scholar
  33. Garnier P, Néel C, Aita C, Recous S, Lafolie F, Mary B (2003) Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation. Eur J Soil Sci 54(3):555–568CrossRefGoogle Scholar
  34. Gilmour JT (1984) The effects of soil properties on nitrification and nitrification inhibition. Soil Sci Soc Am J 48(6):1262–1266CrossRefGoogle Scholar
  35. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: The challenge of feeding 9 billion people. Science 327(5967):812–818CrossRefGoogle Scholar
  36. Grable AR (1966) Soil aeration and plant growth. Advances in agronomy. Acad Press 18:57–106Google Scholar
  37. GV-EJ (1999) Decreto 390/1998 por el que se dictan normas para la declaración de Zonas Vulnerables a la contaminación de las aguas por los nitratos procedentes de la actividad agraria y se aprueba el Código de Buenas Prácticas Agrarias de la Comunidad Autónoma del País Vasco. BOPV 18:1448–1474Google Scholar
  38. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from ambient air temperature. Paper No. 85–2517. American Society of Agricultural Engineers, ChicagoGoogle Scholar
  39. Heitholt JJ, Croy LI, Maness NO, Nguyen HT (1990) Nitrogen partitioning in genotypes of winter wheat differing in grain N concentration. Field Crop Res 23(2):133–144CrossRefGoogle Scholar
  40. IPCC (2006) IPCC guidelines for national greenhouse gas inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Prepared by the national greenhouse gas inventories programme. Published: IGES, JapanGoogle Scholar
  41. IPCC (2007) Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  42. Jarvis SC, Stockdale EA, Shepherd MA, Powlson DS (1996) Nitrogen mineralization in temperate agricultural soils: Processes and measurement advances in agronomy. Acad Press 57:187–235Google Scholar
  43. Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC (2007) Agricultural opportunities to mitigate greenhouse gas emissions. Environ Pollut 150(1):107–124CrossRefGoogle Scholar
  44. Kerr G, Pochop L, Fornstrom KJ, Krall JM, Brown D (1993) Soil water and ET estimates for a wide range of rainfed and irrigated conditions. Agric Water Manag 24(2):147–159CrossRefGoogle Scholar
  45. Kumar K, Goh KM, Donald LS (1999) Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery advances in agronomy. Acad Press 68:197–319Google Scholar
  46. Landeras G, Ortiz-Barredo A, López J (2009) Forecasting weekly evapotranspiration with arima and artificial neural network models. J Irrig Drain Eng 135(3):323–334CrossRefGoogle Scholar
  47. Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1 model structure and sensitivity. J Geophys Res 97(D9):9759–9776CrossRefGoogle Scholar
  48. Macduff JH, White RE (1985) Net mineralization and nitrification rates in a clay soil measured and predicted in permanent grassland from soil-temperature and moisture-content. Plant Soil 86(2):151–172CrossRefGoogle Scholar
  49. MAGRAMA (2011a) Superficies y producciones anuales de cultivos—Estadísticas agrarias. Ministerio de Agricultura, Alimentación y Medio Ambiente. Gobierno de EspañaGoogle Scholar
  50. MAGRAMA (2011b) Caracterización de las comarcas agrarias de España. Tomo 3. Provincia de Alava. Ministerio de Agricultura, Alimentación y Medio Ambiente. Gobierno de EspañaGoogle Scholar
  51. Malhi SS, Lemke R (2007) Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-years rotation cycle. Soil Tillage Res 96(1–2):269–283CrossRefGoogle Scholar
  52. Mary B, Recous S, Machet JM (1988) A comprehensive approach to the fertilizer part of plant nitrogen uptake. In: Jenkinson DS and Smith KA (eds) Nitrogen efficiency in agricultural soils. Elsevier Applied Science, pp 85–94Google Scholar
  53. Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181(1):71–82CrossRefGoogle Scholar
  54. McMaster GS (1997) Phenology, development, and growth of the wheat (Triticum aestivum L.) shoot apex: a review. Adv Agron 59:63–118CrossRefGoogle Scholar
  55. McMaster GS, Smika DE (1988) Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric For Meteorol 43(1):1–18CrossRefGoogle Scholar
  56. Misselbrook TH, Smith KA, Johnson RA, Pain BF (2002) Se-structures and environment: Slurry application techniques to reduce ammonia emissions: Results of some uk field-scale experiments. Biosyst Eng 81(3):313–321CrossRefGoogle Scholar
  57. Misselbrook TH, Sutton MA, Scholefield D (2004) A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications. Soil Use Manag 20(4):365–372CrossRefGoogle Scholar
  58. Monteith JL (1984) Consistency and convenience in the choice of units for agricultural science. Exp Agric 20(02):105–117CrossRefGoogle Scholar
  59. Mosier AR, Parton WJ, Hutchinson GL (1983) Modelling nitrous oxide evolution from cropped and native soils. Environmental biogeochemistry. Ecol Bull 35:229–241Google Scholar
  60. Ortuzar MA (2007) Desarrollo de un sistema de fertilización nitrogenada racional de trigo blando de invierno bajo condiciones de clima mediterráneo húmedo. Doctoral thesis. University of the Basque CountryGoogle Scholar
  61. Ortuzar-Iragorri MA, Castellón A, Alonso A, Besga G, Estavillo JM, Aizpurua A (2010) Estimation of optimum nitrogen fertilizer rates in winter wheat in humid Mediterranean conditions, I: Selection of yield and protein response models. Commun Soil Sci Plant Anal 41(19):2293–2300CrossRefGoogle Scholar
  62. Oscarson P, Lundborg T, Larsson M, Larsson C-M (1995) Genotypic differences in nitrate uptake and nitrogen utilization for spring wheat grown hydroponically. Crop Sci 35(4):1056–1062CrossRefGoogle Scholar
  63. Parton WJ, Hartman M, Ojima D, Schimel D (1998) DAYCENT and its land surface submodel: Description and testing. Glob Planet Chang 19(1–4):35–48CrossRefGoogle Scholar
  64. Petersen SO, Sommer SG (2011) Ammonia and nitrous oxide interactions: Roles of manure organic matter management. Anim Feed Sci Technol 166–167:503–513CrossRefGoogle Scholar
  65. Pinto M, Merino P, del Prado A, Estavillo JM, Yamulki S, Gebauer G, Piertzak S, Lauf J, Oenema O (2004) Increased emissions of nitric oxide and nitrous oxide following tillage of a perennial pasture. Nutr Cycl Agroecosyst 70(1):13–22CrossRefGoogle Scholar
  66. Quemada M (2006) Balance de nitrógeno en sistemas de cultivo de cereal de invierno y de maíz en varias regiones españolas. Monogr INIA serie agrícola nº 21Google Scholar
  67. Rice CW, Grove JH, Smith MS (1987) Estimating soil net nitrogen mineralization as affected by tillage and soil drainage due to topographic position. Can J Soil Sci 67(3):513–520CrossRefGoogle Scholar
  68. Rodda HJE, Scholefield D, Webb BW, Walling DE (1995) Management model for predicting nitrate leaching from grassland catchments in the United Kingdom: 1 Model development. Hydrol Sci J 40(4):433–451CrossRefGoogle Scholar
  69. Roelandt C, Van Wesemael B, Rounsevell M (2005) Estimating annual N2O emissions from agricultural soils in temperate climates. Glob Chang Biol 11(10):1701–1711CrossRefGoogle Scholar
  70. Royal Society of London (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture. RS Policy document 11/09, LondonGoogle Scholar
  71. Rroço E, Mengel K (2000) Nitrogen losses from entire plants of spring wheat (Triticum aestivum) from tillering to maturation. Eur J Agron 13(2–3):101–110CrossRefGoogle Scholar
  72. Scholefield D, Lockyer D, Whitehead D, Tyson K (1991) A model to predict transformations and losses of nitrogen in UK pastures grazed by beef cattle. Plant Soil 132(2):165–177Google Scholar
  73. Schröder JJ, Aarts HFM, van Middelkoop JC, Schils RLM, Velthof GL, Fraters B, Willems WJ (2007) Permissible manure and fertilizer use in dairy farming systems on sandy soils in The Netherlands to comply with the Nitrates Directive target. Eur J Agron 27(1):102–114CrossRefGoogle Scholar
  74. Smith JU, Bradbury NJ, Addiscott TM (1996) Sundial: a pc-based system for simulating nitrogen dynamics in arable land. Agron J 88(1):38–43CrossRefGoogle Scholar
  75. Soil Survey Staff (2006) Keys to soil taxonomy, 11th edn. United States Department of Agriculture, WashingtonGoogle Scholar
  76. St. Luce M, Whalen JK, Ziadi N, Zebarth BJ, Donald LS (2011) Chapter two—nitrogen dynamics and indices to predict soil nitrogen supply in humid temperate soils advances in agronomy. Acad Press 112:55–102Google Scholar
  77. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74(3):207–228CrossRefGoogle Scholar
  78. Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18(3–4):289–307CrossRefGoogle Scholar
  79. Thorman RE, Chadwick DR, Harrison R, Boyles LO, Matthews R (2007) The effect on N2O emissions of storage conditions and rapid incorporation of pig and cattle farmyard manure into tillage land. Biosyst Eng 97(4):501–511CrossRefGoogle Scholar
  80. UNEP (2013) Drawing down N2O to protect Climate and the Ozone layer. A UNEP synthesis report. United Nations Environment Programme (UNEP), NairobiGoogle Scholar
  81. van de Ven GWJ (1992) Grasmod: A Grassland Management Model to Calculate Nitrogen Losses from Grassland. Centre for Agrobiological Research, 109ppGoogle Scholar
  82. Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61(6):903–913CrossRefGoogle Scholar
  83. Vigil MF, Kissel DE (1991) Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Sci Soc Am J 55(3):757–761CrossRefGoogle Scholar
  84. Wardlaw I, Wrigley C (1994) Heat tolerance in temperate cereals: An overview. Funct Plant Biol 21(6):695–703Google Scholar
  85. Zebarth BJ, Rochette P, Burton DL (2008) N2O emissions from spring barley production as influenced by fertilizer nitrogen rate. Can J Soil Sci 88(2):197–205CrossRefGoogle Scholar
  86. Zhou M, Butterbach-Bahl K (2013) Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant and Soil: 1–15Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • P. Gallejones
    • 1
  • A. Aizpurua
    • 2
  • M.A. Ortuzar-Iragorri
    • 3
  • A. del Prado
    • 1
  1. 1.Basque Centre for Climate Change (BC3)BilbaoSpain
  2. 2.Institute of Agricultural Research and DevelopmentDerioSpain
  3. 3.Department of Environmental and Chemical EngineeringUniversity of the Basque Country (UPV/EHU)VitoriaSpain

Personalised recommendations