Energy market impacts of nuclear power phase-out policies

  • Solveig Glomsrød
  • Taoyuan Wei
  • Torben Mideksa
  • Bjørn H. Samset
Original Article


Since the Fukushima disaster in Japan in March 2011, safety concerns have escalated and policies toward nuclear power are being reconsidered in several countries. This article presents a study of the upward pressure on regional electricity prices from nuclear power phase out in four scenarios with various levels of ambition to scale down the nuclear power industry. We use a global general equilibrium model to calculate regional electricity prices that are matching demand with the constrained power supply after the nuclear power phase out. Nuclear power exit in Germany and Switzerland might increase electricity prices in Europe moderately by 2–3 % early on to 4–5 % by 2035 if transmission capacity within the region is sufficient. In a gradual and comprehensive phase out of plants built before 2011, North America, Europe, and Japan face an upward pressure on electricity prices in the range of 23–28 % towards 2035, representing the incentives for further investments in any kind of electricity.


Nuclear power Fukushima disaster Electricity market General equilibrium Carbon emissions 



We are grateful for constructive comments by two anonymous reviewers. This study has been carried out as part of activities of the center for “Strategic Challenges in International Climate and Energy Policy” (CICEP) at the Center for International Climate and Environmental Research - Oslo (CICERO). The CICEP center is mainly financed by the Research Council of Norway (No. 209701).


  1. Aaheim A, Rive N (2005) A model for global responses to anthropogenic changes in the environment (GRACE) report (vol. 2005:05). CICERO, Oslo, NorwayGoogle Scholar
  2. Badri NG, Walmsley TL (Eds.) (2008) Global trade, assistance, and production: the GTAP 7 data base: Center for Global Trade Analysis, Purdue University,
  3. Bauer N, Brecha RJ, Luderer G (2012) Economics of nuclear power and climate change mitigation policies. Proc Natl Acad Sci 109(42):16805–16810. doi: 10.1073/pnas.1201264109 CrossRefGoogle Scholar
  4. Bickerstaff K, Lorenzoni I, Pidgeon NF, Poortinga W, Simmons P (2008) Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste. Public Underst Sci 17(2):145–169. doi: 10.1177/0963662506066719 CrossRefGoogle Scholar
  5. Corner A, Venables D, Spence A, Poortinga W, Demski C, Pidgeon N (2011) Nuclear power, climate change and energy security: exploring British public attitudes. Energy Pol 39(9):4823–4833. doi: 10.1016/j.enpol.2011.06.037 CrossRefGoogle Scholar
  6. Davis LW (2012) Prospects for nuclear power. J Econ Perspect 26(1):49–65. doi: 10.1257/jep.26.1.49 CrossRefGoogle Scholar
  7. de Saint Jacob Y (2011) France’s ‘green vote’ kills shale gas - and targets nuclear power as well Report, European Energy ReviewGoogle Scholar
  8. Duscha V, Schumacher K, Schleich J, Buisson P (2013) Costs of meeting international climate targets without nuclear power. Climate Policy, 1–26. doi:  10.1080/14693062.2014.852018
  9. Glomsrød S, Wei T, Alfsen K (2013) Pledges for climate mitigation: the effects of the Copenhagen accord on CO2 emissions and mitigation costs. Mitig Adapt Strateg Glob Chang 18(5):619–636. doi: 10.1007/s11027-012-9378-2 CrossRefGoogle Scholar
  10. UK Government (2013) The energy act received royal assent on 18 December 2013. Retrieved 12 Feb., 2014, from
  11. Grubler A (2010) The costs of the French nuclear scale-up: a case of negative learning by doing. Energy Pol 38(9):5174–5188. doi: 10.1016/j.enpol.2010.05.003 CrossRefGoogle Scholar
  12. IEA (2006) World Energy Outlook 2006. International Energy AgencyGoogle Scholar
  13. IEA (2010) World Energy Outlook 2010. International Energy AgencyGoogle Scholar
  14. IEA (2011) World Energy Outlook 2011. International Energy AgencyGoogle Scholar
  15. Japan Times (2014) Nuclear plant restarts on the table. Retrieved 12 Feb., 2014, from
  16. Kemfert C, Traber T (2011) The moratorium on nuclear energy: no power shortages expected. DIW Economic Bulletin(1), 3–6Google Scholar
  17. Koomey J, Hultman NE (2007) A reactor-level analysis of busbar costs for US nuclear plants, 1970–2005. Energy Pol 35(11):5630–5642. doi: 10.1016/j.enpol.2007.06.005 CrossRefGoogle Scholar
  18. Kopytko N (2011) Nuclear summer? N Sci 210(2813):22CrossRefGoogle Scholar
  19. Kopytko N, Perkins J (2011) Climate change, nuclear power, and the adaptation–mitigation dilemma. Energy Pol 39(1):318–333. doi: 10.1016/j.enpol.2010.09.046 CrossRefGoogle Scholar
  20. Lee H.-L (2008) The combustion-based CO2 emissions data for GTAP version 7 data base. Retrieved 12 August, 2011, from
  21. Linnerud K, Mideksa TK, Eskeland GS (2011) The impact of climate change on nuclear power supply. Energy J 32(1):149–168CrossRefGoogle Scholar
  22. McKinsey C (2009) Pathways to a low carbon economy — version 2 of the global greenhouse gas abatement cost curve. Retrieved 26.10, 2010, from
  23. MIT (2003) The future of nuclear power: an interdisciplinary MIT study report. MIT Energy InitiativeGoogle Scholar
  24. Nature (2012) Fukushima clean-up. Nature 491(7424):306CrossRefGoogle Scholar
  25. Normile D (2012a) Commission spreads blame for ‘manmade’ disaster. Science 337(6091):143CrossRefGoogle Scholar
  26. Normile D (2012b) Japanese experts question safety of—and need for—nuclear power. Science 335(6068):508CrossRefGoogle Scholar
  27. OECD/NEA (2005) Projected costs of generating electricity 2005 update: OECD/Nuclear Energy Agency, OECD PublishingGoogle Scholar
  28. OECD/NEA (2010) Projected costs of generating electricity 2010: OECD/Nuclear Energy Agency, OECD PublishingGoogle Scholar
  29. Paltsev S, Reilly JM, Jacoby HD, Eckaus RS, McFarland JR, Sarofim MC, Babiker MHM (2005) The MIT emissions prediction and policy analysis (EPPA) model: version 4. Retrieved 2 July, 2011, Report Number 125. MIT Global Change Joint Program, from
  30. Pidgeon NF, Lorenzoni I, Poortinga W (2008) Climate change or nuclear power—no thanks! A quantitative study of public perceptions and risk framing in Britain. Glob Environ Chang 18(1):69–85. doi: 10.1016/j.gloenvcha.2007.09.005 CrossRefGoogle Scholar
  31. Reuters (2012) U.S. approves first new nuclear plant in a generation. Retrieved 9 August, 2012Google Scholar
  32. Rive N, Mideksa TK (2009) Disaggregating the electricity sector in the GRACE model report (vol. 2009:02, pp. 18). CICERO, Oslo, NorwayGoogle Scholar
  33. Science (2011) Japan scraps nuclear plan. Science 332(6031):773Google Scholar
  34. Teräväinen T, Lehtonen M, Martiskainen M (2011) Climate change, energy security, and risk—debating nuclear new build in Finland, France and the UK. Energy Pol 39(6):3434–3442. doi: 10.1016/j.enpol.2011.03.041 CrossRefGoogle Scholar
  35. The Energy Collective (2013) Japan’s solar energy market surge blows away earlier forecasts. Retrieved 2014, from
  36. The Financial Times (2013) UK agrees nuclear power deal with EDF. The Financial Times. Retrieved 12 Feb., 2014, from
  37. van der Zwaan BCC (2002) Nuclear energy — tenfold expansion or phase-out? Technol Forecast Soc Chang 69(3):287–307. doi: 10.1016/S0040-1625(01)00127-5 CrossRefGoogle Scholar
  38. von Hippel FN (2011) The radiological and psychological consequences of the Fukushima Daiichi accident. Bull At Sci 67(5):27–36CrossRefGoogle Scholar
  39. World Nuclear Association (2014a) Nuclear power in Germany. Retrieved 19 Feb., 2014, from
  40. World Nuclear Association (2014b) Nuclear power in Japan. Retrieved 12 Feb., 2014, from
  41. World Nuclear Association (2014c) Nuclear power in Switzerland. Retrieved 19 Feb., 2014, from

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Solveig Glomsrød
    • 1
  • Taoyuan Wei
    • 1
  • Torben Mideksa
    • 1
  • Bjørn H. Samset
    • 1
  1. 1.Center for International Climate and Environmental Research - Oslo (CICERO)OsloNorway

Personalised recommendations