The Tropical Peatland Plantation-Carbon Assessment Tool: estimating CO2 emissions from tropical peat soils under plantations

  • Jenny FarmerEmail author
  • Robin Matthews
  • Pete Smith
  • Jo U. Smith
Original Article


Land use change on Indonesian peatlands contributes to global anthropogenic greenhouse gas (GHG) emissions. Accessible predictive tools are required to estimate likely soil carbon (C) losses and carbon dioxide (CO2) emissions from peat soils under this land use change. Research and modelling efforts in tropical peatlands are limited, restricting the availability of data for complex soil model parameterisation and evaluation. The Tropical Peatland Plantation-Carbon Assessment Tool (TROPP-CAT) was developed to provide a user friendly tool to evaluate and predict soil C losses and CO2 emissions from tropical peat soils. The tool requires simple input values to determine the rate of subsidence, of which the oxidising proportion results in CO2 emissions. This paper describes the model structure and equations, and presents a number of evaluation and application runs. TROPP-CAT has been applied for both site specific and national level simulations, on existing oil palm and Acacia plantations, as well as on peat swamp forest sites to predict likely emissions from future land use change. Through an uncertainty and sensitivity analysis, literature reviews and comparison with other methods of estimating soil C losses, the paper identifies opportunities for future model development, bridging between different approaches to predicting CO2 emissions from tropical peatlands under land use change. TROPP-CAT can be accessed online from in both English and Bahasa Indonesia.


CO2 emissions Model Plantations Soil carbon Tropical peat 



The authors are grateful for financial support for this paper from the European Union under the REDD-ALERT (Reducing Emissions from Deforestation and Degradation from Alternative Land Uses in Rainforests of the Tropics) project, Grant Agreement number 226310. Thanks are given to Setiari Marwanto of the Indonesian Soil Research Institute for making available data used in the model evaluation. The authors have no other relevant affiliations or financial involvement with any organisation or entity with a financial interest in, or financial conflict with, the subject matter or materials discussed in the manuscript apart from those disclosed. PS is a Royal Society-Wolfson Research Merit Award holder.


  1. Agus F, Hairiah K, Mulyani A (2011) Measuring carbon stock in peat soils. World Agroforestry Centre (ICRAF) Southeast Asia Regional Program and Indonesian Centre for Agricultural Land Resources Research and DevelopmentGoogle Scholar
  2. ASEAN Secretariat (2003) Implementation of the ASEAN policy on zero burning guidelines for the implementation of the ASEAN policy on zero burningGoogle Scholar
  3. Austin K, Sheppard S, Stolle F (2012) Indonesia’s Moratorium on New Forest Concessions: key findings and next steps. WRI Working Paper (February): 1–8Google Scholar
  4. Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian Peatlands. Proc Natl Acad Sci U S A 106(50):21213–21218. doi: 10.1073/pnas.0906457106 CrossRefGoogle Scholar
  5. Brady MA (2002) Peat accumulation in Sumatra: does Clymo’s model apply? Peatlands for people, natural resources function and sustainable management, Rieley JO, Page SE (eds) with Setiadi, B. Proceedings of the International Symposium on Tropical Peatland, 22– 23 August 2001, Jakarta, Indonesia. BPPT and Indonesian PeGoogle Scholar
  6. Couwenberg J (2009) Emission factors for managed peat soils—an analysis of IPCC default values. Wetlands International: UNFCCC BonnGoogle Scholar
  7. Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF, Murdiyarso D et al (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol J Soc Conserv Biol 23(2):348–358. doi: 10.1111/j.1523-1739.2008.01096.x CrossRefGoogle Scholar
  8. Deverel S, Leighton D (2010) Historic, recent and future subsidence; Sacramento- San Joaquin Delta, California, USA. San Francisco Estuary and Watershed Science 8:1–23Google Scholar
  9. Farmer J, Matthews R, Smith JU, Smith P, Singh BK (2011) Assessing existing peatland models for their applicability for modelling greenhouse gas emissions from tropical peat soils. Curr Opin Environ Sustain 3(5):339–349. doi: 10.1016/j.cosust.2011.08.010 CrossRefGoogle Scholar
  10. Gonzalez-Perez J, Gonzalez-Vila F, Almendros G, Knicker H (2004) The effect of fire on soil organic matter— a review. Environ Int 30(6):855–870. doi: 10.1016/j.envint.2004.02.003 CrossRefGoogle Scholar
  11. Hergoualc’h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use change in Southeast Asian Tropical Peatlands: a review. Glob Biogeochem Cycles 25(2) (April 14). doi: 10.1029/2009GB003718
  12. Hillier J, Walter C, Malin D, Garcia-suarez T, Mila-i-Canals L, Smith P (2011) A farm-focused calculator for emissions from crop and livestock production. Environ Model Software 26:1070–1078. doi: 10.1016/j.envsoft.2011.03.014 CrossRefGoogle Scholar
  13. Hirano T, Jauhiainen J, Inoue T, Takahashi H (2008) Controls on the carbon balance of tropical peatlands. Ecosystems 12(6):873–887. doi: 10.1007/s10021-008-9209-1 CrossRefGoogle Scholar
  14. Hooijer A, Silvius M, Wosten JHM, Page SE (2006) PEAT‐CO2. Assessment of CO2 emissions from drained peatlands in SE Asia. Delft Hydraulics report Q3943Google Scholar
  15. Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten JHM, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7(5):1505–1514. doi: 10.5194/bg-7-1505-2010 CrossRefGoogle Scholar
  16. Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9(3):1053–1071. doi: 10.5194/bg-9-1053-2012 CrossRefGoogle Scholar
  17. IPCC (2007) IPCC 4th assessment report. Climate change working group 1: the physical science basisGoogle Scholar
  18. Jauhiainen J, Limin S, Silvennoinen H, Vasander H (2008) Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89(12):3503–3514CrossRefGoogle Scholar
  19. Jauhiainen J, Hooijer A, Page SE (2012) Carbon dioxide emissions from an acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9(2):617–630. doi: 10.5194/bg-9-617-2012 CrossRefGoogle Scholar
  20. Kasimir-Klemedtsson A, Klemedtsson L, Berglund K, Marikainene P, Silvola J, Oenema O (1997) Greenhouse gas emissions from farmed organic soils: a review. Soil Use Manag 13:245–250CrossRefGoogle Scholar
  21. Kelting DL, Burger JA, Edwards GS (1998) Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biol Biochem 30(7):961–968. doi: 10.1016/S0038-0717(97)00186-7 CrossRefGoogle Scholar
  22. Kirschbaum M (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27(6):753–760. doi: 10.1016/0038-0717(94)00242-S CrossRefGoogle Scholar
  23. Kool DM, Buurman P, Hoekman DH (2006) Oxidation and compaction of a collapsed peat dome in Central Kalimantan. Geoderma 137(1–2):217–225. doi: 10.1016/j.geoderma.2006.08.021 CrossRefGoogle Scholar
  24. Marwanto S (2012) Kontribusi Perakaran Kelapa Sawit Terhadap Fluks CO2 Di Kecamatan Sungai Gelam, Kabupaten Muaro Jambi, Provinsi Jambi. Maters Thesis- Indonesian Soil Research InstituteGoogle Scholar
  25. Melling L, Goh KJ, Beauvais C, Hatano R (2005a) Carbon flow and budget in a young oil palm agroecosystem on deep tropical peat. 1–5Google Scholar
  26. Melling L, Ryusuke H, Goh KJ (2005b) Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus 1–11Google Scholar
  27. Murayama S, Bakar Z (1996) Decomposition of tropical peat soils 2. Estimation of in situ decomposition by measurement of CO2 flux. Jpn Agric Res Q 30:153–158Google Scholar
  28. Murdiyarso D, Dewi S, Lawrence D, Seymour F (2011) Indonesia’s forest moratorium—a stepping stone to better forest governance? CIFOR Working Paper 76Google Scholar
  29. Nayak DR, Miller D, Nolan A, Smith P, Smith J (2008). Calculating carbon savings from wind farms on Scottish Peat Lands—a new approach. Final Report (June): 1–83Google Scholar
  30. Nayak DR, Miller D, Nolan A, Smith P, Smith JU (2010) Calculating carbon budgets of wind farms on Scottish peatlands. Mires Peat 4:1–23Google Scholar
  31. Neilson JKW (1988) Microbial resiration as an index of soil aeration in compacted and sewage sludge amended soils. Masters Thesis. University of ArizonaGoogle Scholar
  32. Page SE, Siegert F, Rieley J, Boehm HV, Jayak A, Limink S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65. doi: 10.1038/nature01141.1 CrossRefGoogle Scholar
  33. Page SE, Wűst RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog(Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19(7):625–635. doi: 10.1002/jqs.884 CrossRefGoogle Scholar
  34. Page SE, Morrison R, Mailins C, Hooijer A, Rieley JO, Jauhiainen J (2011a) Review of Peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia. Indirect Effects of Biofuel Production Series. White Paper. 1–77Google Scholar
  35. Page SE, Rieley JO, Banks CJ (2011b) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17(2):798–818. doi: 10.1111/j.1365-2486.2010.02279.x CrossRefGoogle Scholar
  36. RSPO (2007) Roundtable on sustainable palm oil; principles and criteria for sustainable palm oil productionGoogle Scholar
  37. Sheil D, Casson A, Meijaard E, van Noordwijk M, Gaskell J, Sunderland-Groves J, Wertz K, Kanninen M (2009) The impacts and opportunities of oil palm in Southeast Asia what do we know and what do we need to know? CIFOR Occasional Paper No. 51Google Scholar
  38. Shimada S, Takahashi H, Haraguchi A, Kaneko M (2001) The carbon content characteristics of tropical peats in central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53(3):249–267CrossRefGoogle Scholar
  39. Siegert F, Zhukov B, Oertel D, Limin S, Page SE, Rieley JO (2004) Peat fires detected by the BIRD satellite. Int J Remote Sens 25:3221–3230. doi: 10.1080/01431160310001642377 CrossRefGoogle Scholar
  40. Silvola J, Alm J, Alholm U, Nykanen H, Pertti J (1996) Fluxes from peat in boreal mires under varying temperatures and moisture conditions. J Ecol 84(2):219–228CrossRefGoogle Scholar
  41. Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK (2000) Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob Chang Biol 6:791–803CrossRefGoogle Scholar
  42. Smith JU, Gottschalk P, Bellarby J, Chapman S, Lilly A, Towers W, Bell J et al (2010) Estimating changes in Scottish soil carbon stocks using ECOSSE. I. Model description and uncertainties. Climate Res 45(December 30):179–192. doi: 10.3354/cr00899 CrossRefGoogle Scholar
  43. Sorensen K (1993) Indonesian peat swamp forests and their role as a carbon sink. Chemosphere 27(6):1065–1082Google Scholar
  44. Stephens JC, Speir WH (1969) Subsidence of organic soils in the USA. Int Assoc Hydrol Sci 89:523–524Google Scholar
  45. Stephens JC, Stewart EH (1976) Effect of climate on organic soil subsidence. In: Proceedings of the 2nd Symposium on Land Subsidence, Anaheim, California. IAHS-AIHS (121):647–655Google Scholar
  46. UNFCCC (1999) Indonesia: the first national communication on climate changeGoogle Scholar
  47. Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc’h K, Kurnianto S, Purbopuspito J et al (2012) A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–4485. doi: 10.5194/bg-9-4477-2012 Google Scholar
  48. Wosten JHM, Ismail AB, van Wijk ALM (1997) Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78:25–36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jenny Farmer
    • 1
    • 2
    Email author
  • Robin Matthews
    • 2
  • Pete Smith
    • 1
  • Jo U. Smith
    • 1
  1. 1.Institute of Biological and Environmental Sciences, School of Biological SciencesUniversity of AberdeenAberdeenUK
  2. 2.James Hutton InstituteAberdeenUK

Personalised recommendations