Climate change adaptation, mitigation and livelihood benefits in coffee production: where are the synergies?

  • Eric Rahn
  • Peter Läderach
  • María Baca
  • Charlotte Cressy
  • Götz Schroth
  • Daniella Malin
  • Henk van Rikxoort
  • Jefferson Shriver
Article

Abstract

There are worldwide approximately 4.3 million coffee (Coffea arabica) producing smallholders generating a large share of tropical developing countries’ gross domestic product, notably in Central America. Their livelihoods and coffee production are facing major challenges due to projected climate change, requiring adaptation decisions that may range from changes in management practices to changes in crops or migration. Since management practices such as shade use and reforestation influence both climate vulnerability and carbon stocks in coffee, there may be synergies between climate change adaptation and mitigation that could make it advantageous to jointly pursue both objectives. In some cases, carbon accounting for mitigation actions might even be used to incentivize and subsidize adaptation actions. To assess potential synergies between climate change mitigation and adaptation in smallholder coffee production systems, we quantified (i) the potential of changes in coffee production and processing practices as well as other livelihood activities to reduce net greenhouse gas emissions, (ii) coffee farmers’ climate change vulnerability and need for adaptation, including the possibility of carbon markets subsidizing adaptation. We worked with smallholder organic coffee farmers in Northern Nicaragua, using workshops, interviews, farm visits and the Cool Farm Tool software to calculate greenhouse gas balances of coffee farms. From the 12 activities found to be relevant for adaptation, two showed strong and five showed modest synergies with mitigation. Afforestation of degraded areas with coffee agroforestry systems and boundary tree plantings resulted in the highest synergies between adaptation and mitigation. Financing possibilities for joint adaptation-mitigation activities could arise through carbon offsetting, carbon insetting, and carbon footprint reductions. Non-monetary benefits such as technical assistance and capacity building could be effective in promoting such synergies at low transaction costs.

Keywords

Exposure to climate change Sensitivity to climate change Adaptive capacity Carbon footprint Carbon insetting Carbon offsetting Nicaragua 

References

  1. Albrecht A, Kandji S (2003) Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems and Environment 99:15–27CrossRefGoogle Scholar
  2. Ayarza M, Huber-Sannwald E, Herrick J, Reynolds J, García-Barrios L, Welchez L, Lentes P, Pavón J, Morales J, Alvarado A, Pinedo M, Baquera N, Zelaya S, Pineda R, Amézquita E, Trejo M (2010) Changing human-ecological relationships and drivers using the Quesungual agroforestry system in western Honduras. Renewable Agriculture and Food Systems 25(3):219–227CrossRefGoogle Scholar
  3. Baca M, Haggar J, Läderach P, Benjamin T, Backer C (2011) Identificación de la vulnerabilidad en los medios de vida de las familias cafetaleras en Nicaragua y lineamientos de posibles estrategias de adaptación al cambio climático. Master’s Thesis. CATIE. Costa Rica. URL: www.catie.ac.cr/orton/tesis.
  4. Bacon C (2005) Confronting the coffee crisis: Can fair trade, organic, and specialty coffees reduce small-scale farmer vulnerability in northern Nicaragua? World Development 33:497–511CrossRefGoogle Scholar
  5. Carter T, Jones R, Lu X, Bhadwal S, Conde C, Mearns L, O’Neill B, Rounsevell M, Zurek M (2007) New assessment methods and the characterisation of future conditions. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 133–171Google Scholar
  6. Castro A, Rivera M, Ferreira O, Pavon J, Garcia E, Amezquita E, Ayarza M, Barrios E, Rondon M, Pauli N, Baltodano M, Mendoza B, Welchez L, Cook S, Rubiano J, Johnson N, Rao I (2008) Is the Quesungual system an option for smallholders in the dry hillside agro-ecosystems? In: Humphreys E, Bayot R, van Brakel M, Gichuki F, Svendsen M, White D, Wester P, Huber-Lee A, Cook S, Douthwaite B, Hoanh C, Johnson N, Nguyen-Khoa S, Vidal A, MacIntyre I, MacIntyre R (eds) Fighting poverty through sustainable water use: Volumes I, II, III and IV. Proceedings of the CGIAR Challenge Program on Water and Food 2nd International Forum on Water and Food, Addis Ababa, The CGIAR Challenge Program on Water and Food, Colombo. 297ppGoogle Scholar
  7. Castro F, Montes E, Raine M (2004) Centroamerica la crisis cafetalera: Efectos y estrategias para hacerle frente. The World Bank, Latin America and Caribbean Region, Sustainable Development Working Paper 23Google Scholar
  8. Caswell M, Méndez E, Bacon C (2012) Food security and smallholder coffee production: current issues and future directions. ARLG Policy Brief No. 1. Agroecology and Rural Livelihoods Group (ARLG), University of Vermont. Burlington, VT, USA. URL: http://www.uvm.edu/~agroecol/?Page=Publications.html
  9. Cortina-Villar S, Plascencia-Vargas H, Vaca R, Schroth G, Zepeda Y, Soto-Pinto L, Nahed-Toral J (2012) Resolving the conflict between ecosystem protection and land use in protected areas of the Sierra Madre de Chiapas, Mexico. Environmental Management 49:649–662CrossRefGoogle Scholar
  10. DaMatta F (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Research 84:99–114CrossRefGoogle Scholar
  11. Eitzinger A, Läderach P, Bunn C, Quiroga A, Benedikter A, Pantoja A, Gordon J, Bruni M (2012) Implications of a changing climate on food security and smallholders’ livelihoods in Bogotá, Colombia. Mitigation and Adaptation Strategies for Global Change. doi:10.1007/s11027-012-9432-0 Google Scholar
  12. Ericksen P, Thornton P, Notenbaert A, Cramer L, Jones P, Herrero M (2011) Mapping hotspots of climate change and food insecurity in the global tropics. CCAFS Report no. 5. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. URL: www.ccafs.cgiar.org.
  13. Hänsela G, Ibrahimb M, Villanuevab C, Andradec H (2009) Exploiting synergies between silvopastoral system components for carbon sequestration and an increase in cattle productivity: Experience from Costa Rica and Nicaragua. In: XIII World Forestry Congress Buenos Aires, ArgentinaGoogle Scholar
  14. Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978CrossRefGoogle Scholar
  15. Hillier J, Walter C, Malin D, Garcia-Suarez T, Mila-i-Canals L, Smith P (2011) A farm-focused calculator for emissions from crop and livestock production. Environmental Modelling & Software 26:1070–1078CrossRefGoogle Scholar
  16. INIDE (Instituto Nacional de Información de Desarrollo) (2008) San Juan del Río Coco en cifras. URL: http://www.inide.gob.ni/censos2005/CifrasMun/tablas_cifras.htm
  17. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: IPCC fourth assessment report. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Jha S, Bacon C, Philpott S, Rice R, Mendez E, Läderach P (2011) A review of ecosystem services, farmer livelihoods, and value chains in shade coffee agroecosystems. In: Campbell B, Ortiz S (eds) Integrating Agriculture, Conservation and Ecotourism: Examples from the Field. Springer, Netherlads, pp 141–208CrossRefGoogle Scholar
  19. Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega F, Poehling H, Borgemeister C (2009) Thermal tolerance of the coffee berry borer Hypothenemus hampei: Predictions of climate change impact on a tropical insect pest. PLoS ONE 4(8):e6487. doi:10.1371/journal.pone.0006487 CrossRefGoogle Scholar
  20. Jaramillo J, Muchugu E, Vega F, Davis A, Borgemeister C, Chabi-Olaye A (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS ONE 6(9):e24528. doi:10.1371/journal.pone.0024528 CrossRefGoogle Scholar
  21. Läderach P, Oberthür T, Cook S, Estrada IM, Pohlan J, Fischer M, Rosales LR (2011a) Systemic agronomic farm management for improved coffee quality. Field Crops Research 120:321–329CrossRefGoogle Scholar
  22. Läderach P, Lundy M, Jarvis A, Ramirez J, Perez Portilla E, Schepp K (2011b) Predicted impact of climate change on coffee supply chains. In: Filho WL (ed.) The economic, social and political elements of climate change. Climate Change Management. doi:10.1007/978-3-642-14776-0_42, Berlin
  23. Lin B (2007) Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agriculture and Forest Meteorology 144:85–94CrossRefGoogle Scholar
  24. Lin B (2011) Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 61(3):183–193CrossRefGoogle Scholar
  25. Lobell D, Ortiz-Monasterio J, Addams C, Asner G (2002) Soil, climate, and management impacts on regional wheat productivity in Mexico from remote sensing. Agricultural and Forest Meteorology 114(1):31–43CrossRefGoogle Scholar
  26. Luedeling E, Sileshi G, Beedy T, Dietz J (2011) Carbon sequestration potential of agroforestry systems in Africa. In: Kumar B, Nair P (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Advances in Agroforestry 8, doi:10.1007/978-94-007-1630-8_4, Springer
  27. Matocha J, Schroth G, Hills T, Hole D (2012) Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation. In: Nair P, Garrity D (eds) Agroforestry—The future of global land use. Springer, Berlin, pp 105–126CrossRefGoogle Scholar
  28. Moguel P, Toledo V (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology 13(1):11–21CrossRefGoogle Scholar
  29. Peters M, Rao I, Fisher M, Subbarao G, Martens S, Herrero M, van der Hoek R, Schultze-Kraft R, Miles J, Castro A, Graefe S, Tiemann T, Ayarza M, Hyman G (2012) Tropical forage-based systems to mitigate greenhouse gas emissions. In: CIAT, Eco-efficiency: From vision to reality. Chapter 11, URL: http://ciat.cgiar.org/new-publications/
  30. Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231–259CrossRefGoogle Scholar
  31. Ramirez-Villegas J, Jarvis A (2010) Downscaling global circulation model outputs: the delta method decision and policy analysis Working Paper No. 1. Policy AnalysisGoogle Scholar
  32. Ruf F, Schroth G (eds) (2013) Cultures pérennes tropicales—enjeux économiques et écologiques de la diversification. Editions Quae, Montpellier, 320 pp. ISBN 978-2-7592-1854-7Google Scholar
  33. Schroth G, Läderach P, Dempewolf J, Philpott S, Haggar J, Eakin H, Castillejos R, Garcia MJ, Soto PL, Hernandez R, Eitzinger A, Ramirez-Villegas J (2009) Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change 14:605–625CrossRefGoogle Scholar
  34. Schroth G, da Mota M, Hills T, Soto-Pinto L, Wijayanto I, Arief C, Zepeda Y (2011) Linking carbon, biodiversity and livelihoods near forest margins: the role of agroforestry. In: Kumar B, Nair P (eds) Carbon sequestration in agroforestry: Processes, policy, and prospects. Springer, Berlin, pp 179–200CrossRefGoogle Scholar
  35. Shaxson F (2000) Nuevos conceptos y enfoques para el manejo de suelos en los trópicos con énfasis en zonas de ladera. Boletin de suelos de la FAO 75, Roma, 125pGoogle Scholar
  36. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes R, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2007) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B 363:789–813CrossRefGoogle Scholar
  37. Somarriba E, Harvey C, Samper M, Anthony F, Gonzalez J, Staver C, Rice R (2004) Biodiversity conservation in neotropical coffee (coffea Arabica) plantations. In: Schroth G, da Fonseca G, Harvey C, Gascon C, Vasconcelos H, Izac A (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, D.C, pp 198–226Google Scholar
  38. Sommer R, Vlek P, Sa T, Vielhauer K (2004) Nutrient balance of shifting cultivation by burning or mulching in the Eastern Amazon: Evidence for subsoil nutrient accumulation. Nutrient Cycling Agroecosystems 68:257–271CrossRefGoogle Scholar
  39. Tchibo (2008) Case study Tchibo privat Kaffee rarity machare by Tchibo GmbH. PCF Pilot Project Deutschland. November 2008. URL: http://www.pcfprojekt.de/files/1232962944/pcf_tchibo_coffee.pdf
  40. Tscharntke T, Clough Y, Bhagwat S, Buchori D, Faust H, Hertel D, Holscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger T (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. Journal of Applied Ecology 48(3):619–629CrossRefGoogle Scholar
  41. Torres A, Marchant R, Lovett J, Smart J, Tipper R (2010) Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. Ecological Economics 69(3):469–477CrossRefGoogle Scholar
  42. Vaast P, Beer J, Harvey C, Harmand J (2005) Environmental services of coffee agroforestry systems in Central America: a promising potential to improve the livelihoods of coffee farmers’ communities. In: CATIE (ed) Integrated management of environmental services in human-dominated tropical landscapes. Tropical Agriculture Research and Higher Education Center, Turrialba, pp 35–39Google Scholar
  43. Vaast P, Bertrand B, Perriot J, Guyot B, Génard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea Arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture 86:197–204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eric Rahn
    • 1
    • 8
  • Peter Läderach
    • 2
  • María Baca
    • 2
  • Charlotte Cressy
    • 3
  • Götz Schroth
    • 4
  • Daniella Malin
    • 5
  • Henk van Rikxoort
    • 6
  • Jefferson Shriver
    • 7
  1. 1.International Center for Tropical Agriculture (CIAT)CaliColombia
  2. 2.International Center for Tropical Agriculture (CIAT)ManaguaNicaragua
  3. 3.Flo-CertBonnGermany
  4. 4.SantarémBrazil
  5. 5.Sustainable Food LabHartlandUSA
  6. 6.Wageningen University and Research Centre (WUR)WageningenNetherlands
  7. 7.Catholic Relief ServicesManaguaNicaragua
  8. 8.Swiss Federal Institute of Aquatic Science and Technology (EAWAG)DübendorfSwitzerland

Personalised recommendations