Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input

  • Andreas Meyer-Aurich
  • Jørgen E. Olesen
  • Annette Prochnow
  • Reiner Brunsch
Original Article

Abstract

Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop production. The surplus area could be used for energy production without affecting the land use necessary for food and feed production. We built a model to investigate the effect of changing nitrogen (N) fertilizer rates on cropping area required for a given amount of crops. We found that an increase in nitrogen fertilizer supply is only justified if GHG mitigation with additional land is higher than 9–15 t carbon dioxide equivalents per hectare (CO2-eq../ha). The mitigation potential of bioenergy production from energy crops is most often not in this range. Hence, from a GHG abatement point of view land should rather be used to produce crops at moderate fertilizer rate than to produce energy crops. This may change if farmers are forced to reduce their N input due to taxes or governmental regulations as it is the case in Denmark. However, with a fertilizer rate 10 % below the economical optimum a reduction of N input is still more effective than the production of bioenergy unless mitigation effect of the bioenergy production exceeds 7 t carbon dioxide (CO2)-eq../ha. An intensification of land use in terms of N supply to provide more land for bioenergy production can only in exceptional cases be justified to mitigate GHG emissions with bioenergy under current frame conditions in Germany and Denmark.

Keywords

Agriculture Bioenergy Greenhouse gas emissions Land use Nitrogen fertilizer 

Notes

Acknowledgement

This study was supported by a research fellowship for Andreas Meyer-Aurich under the OECD Co-operative Research Programme: Biological Resource Management for Sustainable Agricultural Systems, and for Jørgen E. Olesen the study was supported by the Danish Ministry of Food, Agriculture and Fisheries (BIOMAN project).

References

  1. Adhya TK, Sharma PD, Kumar Gogoi A (2009) Mitigating Greenhouse Gas Emission from Agriculture. Climate Change and Crops, Springer Berlin Heidelberg, pp 329–344Google Scholar
  2. Babcock B, Blackmer AM (1994) The ex post relationship between growing conditions and optimal fertilizer levels. Rev Agr Econ 16:353–362CrossRefGoogle Scholar
  3. Bachmaier M, Gandorfer M (2009) A conceptual framework for judging the precision agriculture hypothesis with regard to site-specific nitrogen application. Prec Agric 10:95–110CrossRefGoogle Scholar
  4. Bachmaier M, Gandorfer M (2012) Estimating uncertainty of economically optimum N fertilizer rates. Int J Agron. doi: 10.1155/2012/580294, Article ID 580294
  5. Berry PM, Kindred DR, Olesen JE, Jørgensen LN, Paveley ND (2010) Quantifying the effect of interactions between disease control, nitrogen supply and land use change on the greenhouse gas emissions associated with wheat production. Plant Pathol 59:753–763CrossRefGoogle Scholar
  6. Bringezu S, Schütz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt GA, Rettenmaier N (2009) Global implications of biomass and biofuel use in Germany - Recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17:57–68CrossRefGoogle Scholar
  7. Cherubini F (2010) GHG balances of bioenergy systems—Overview of key steps in the production chain and methodological concerns. Renew Energ 35:1565–1573CrossRefGoogle Scholar
  8. Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour Conserv Recy 53:434–447CrossRefGoogle Scholar
  9. Chirinda N, Olesen J, Porter J (2012) Root carbon input in organic and inorganic fertilizer-based systems. Plant Soil 1–13. doi: 10.1007/s11104-012-1208-5
  10. Christensen BT (1986) Straw incorporation and soil organic matter in macro-aggregates and particle size separates. J Soil Sci 37:125–135CrossRefGoogle Scholar
  11. Ciaian P, Kancs DA (2011) Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis. Resour Energy Econ 33:326–348CrossRefGoogle Scholar
  12. Dalgaard T, Olesen JE, Petersen SO, Petersen BM, Jørgensen U, Kristensen T, Hutchings NJ, Gyldenkærne S, Hermansen JE (2011) Developments in greenhouse gas emissions and net energy use in Danish agriculture – How to achieve substantial CO2 reduction? Environ Pollut 159:3193–3203CrossRefGoogle Scholar
  13. Fachagentur Nachwachsende Rohstoffe (2010) Anbau nachwachsender Rohstoffe 2010. Press release No. 724. Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Gülzow, GermanyGoogle Scholar
  14. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land Clearing and the Biofuel Carbon Debt. Science 319:1235–1238CrossRefGoogle Scholar
  15. Frank MD, Beattie BR, Embleton ME (1990) A comparison of alternative crop response models. Am J Agr Econ 72:597–603CrossRefGoogle Scholar
  16. Hege U, Krauss M (2000) Der internationale organische Stickstoffdauerdüngungsversuch (IOSDV) Puch-Deutschland. UFZ Bericht 15/2000, pp. 37–46.Google Scholar
  17. IPCC (2006) Guidelines for national greenhouse gas inventories, volume 4, Agriculture, forestry and other land use, Intergovernmental Panel on Climate Change.Google Scholar
  18. Kastens TL, Schmidt JP, Dhuyvetter KC (2003) Yield models implied by traditional fertilizer recommendations and a framework for including non-traditional information. Soil Sci Soc Am J 67:351–364CrossRefGoogle Scholar
  19. Kätterer T, Andrén O, Persson J (2004) The impact of altered management on long-term agricultural soil carbon stocks – a Swedish case study. Nutr Cycl Agroecos 70:179–187CrossRefGoogle Scholar
  20. Kronvang B, Andersen HE, Børgesen C, Dalgaard T, Larsen SE, Bøgestrand J, Blicher-Mathiesen G (2008) Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environ Sci Pollut R 11:144–152CrossRefGoogle Scholar
  21. Köhn W, Ellmer F, Peschke H, Chmielewski F-M, Erekul O (2000) Dauerdüngungsversuch (IOSDV) Berlin-Dahlem Deutschland. UFZ Bericht 15/2000, pp. 25–35.Google Scholar
  22. Körschens M (2000) IOSDV Internationale organische Stickstoffdauerdüngeversuche. Bericht der Internationalen Arbeitsgemeinschaft Bodenfruchtbarkeit in der Internationalen Bodenkundlichen Union. UFZ-Bericht 15/2000.Google Scholar
  23. Kroeze C (1996) Inventory of strategies for reducing anthropogenic emissions of N2O and potential reduction of emissions in The Netherlands. Mitig Adapt Strateg Glob Change 1:115–137CrossRefGoogle Scholar
  24. Lal R (2004) Carbon emissions from farm operations. Environ Int 30:981–990CrossRefGoogle Scholar
  25. Lankoski J, Ollikainen M (2011) Biofuel policies and the environment: Do climate benefits warrant increased production from biofuel feedstocks? Ecol Econ 70:676–687CrossRefGoogle Scholar
  26. Lu F, Wang X, Han B, Ouyang Z, Duan X, Zheng H, Miao H (2009) Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Global Change Biol 15:281–305CrossRefGoogle Scholar
  27. Meyer-Aurich A (2005) Economic and environmental analysis of sustainable farming practices - a Bavarian case study. Agr Syst 86:190–206CrossRefGoogle Scholar
  28. Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plöchl M, Berg W (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energ 37:277–284CrossRefGoogle Scholar
  29. Meyer-Aurich A, Weersink A, Janovicek K, Deen B (2006) Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in Eastern Canada. Agr Ecosyst Environ 117:119–127CrossRefGoogle Scholar
  30. Meyer-Aurich A, Weersink A, Gandorfer M, Wagner P (2010) Optimal site-specific fertilization and harvesting strategies with respect to crop yield and quality response to nitrogen. Agr Syst 103:478–485CrossRefGoogle Scholar
  31. Pannell DJ (2006) Flat-earth economics: The far-reaching consequences of flat payoff functions in economic decision making. Rev Agr Econ 28:553–566CrossRefGoogle Scholar
  32. Petersen JB (2010) Oversigt over landsforsøgene 2010. Forsøg og undersøgelser I Dansk Landbrugsrådgivning. Videncentret for Landbrug, Skejby, DenmarkGoogle Scholar
  33. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science 319:1238–1240CrossRefGoogle Scholar
  34. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos T Roy Soc B 363:789–813CrossRefGoogle Scholar
  35. Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwater W (2011) Too much of a good thing. Nature 472:159–161CrossRefGoogle Scholar
  36. Sørensen LH (1986) Organic matter and microbial biomass in a soil incubated in the field for 20 years with 14 C-labelled barley straw. Soil Biol Biochem 19:39–42CrossRefGoogle Scholar
  37. Wissenschaftlicher Beirat für Agrarpolitik (2008) Nutzung von Biomasse zur Energiegewinnung: Empfehlungen an die Politik. Sonderheft 216 der Berichte über Landwirtschaft, Kohlhammer, StuttgartGoogle Scholar
  38. Wood S, Cowie A (2004) A review of greenhouse gas emission factors for fertiliser production, IEA bioenergy task 38, http://www.ieabioenergy-task38.org/publications/GHG_Emission_Fertilizer%20Production_July2004.pdf

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Andreas Meyer-Aurich
    • 1
  • Jørgen E. Olesen
    • 2
  • Annette Prochnow
    • 1
  • Reiner Brunsch
    • 1
  1. 1.Leibniz-Institute for Agricultural Engineering Potsdam-Bornim e.V.PotsdamGermany
  2. 2.Department of AgroecologyAarhus UniversityTjeleDenmark

Personalised recommendations