Microalgae: a promising tool for carbon sequestration



Increasing trends in global warming already evident, the likelihood of further rise continuing, and their impacts give urgency to addressing carbon sequestration technologies more coherently and effectively. Carbon dioxide (CO2) is responsible for over half the warming potential of all greenhouse gases (GHG), due to the dependence of world economies on fossil fuels. The processes involving CO2 capture and storage (CCS) are gaining attention as an alternative for reducing CO2 concentration in the ambient air. However, these technologies are considered as short-term solutions, as there are still concerns about the environmental sustainability of these processes. A promising technology could be the biological capture of CO2 using microalgae due to its unmatched advantages over higher plants and ocean fertilization. Microalgae are phototrophic microorganisms with simple nutritional requirements, and comprising the major primary producers on this planet. Specific pathways include autotrophic production via both open pond or closed photobioreactor (PBR) systems. Photosynthetic efficiency of microalgae ranged from 10–20 % in comparison with 1–2 % of most terrestrial plants. Some algal species, during their exponential growth, can double their biomass in periods as short as 3.5 hours. Moreover, advantage of being tolerant of high concentration of CO2 (flue gas), low light intensity requirements, environmentally sustainable, and co-producing added value products put these as the favoured organisms. Advantages of microalgae in comparison with other sequestration methodologies are discussed, which includes the cultivation systems, the key process parameters, wastewater treatment, harvesting and the novel bio-products produced by microalgal biomass.


Microalgae biomass Global warming Global carbon cycle Carbon dioxide sequestration Algaculture Photosynthetic efficiency Kyoto protocol Bioreactor Wastewater treatment 



The authors are thankful to the Chairperson, Department of Botany, Panjab University, Chandigarh for providing necessary research facilities, University Grants Commission, New Delhi for SAP-DRS-II grants and to the Council of Scientific and Industrial Research, New Delhi (U. B. Singh) for providing financial assistance in the form of Junior Research Fellowship and Senior Research Fellowship.


  1. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energ 27(11):1195–1208CrossRefGoogle Scholar
  2. Anderson RA (2005) Algal cultural techniques. Elsevier Academic Press, AmsterdamGoogle Scholar
  3. Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226CrossRefGoogle Scholar
  4. Bayless DJ, Kremer GG, Prudich ME, Stuart BJ, Vis-Chiasson ML, Cooksey K, Muhs J (2001) Enhanced practical photosynthetic CO2 mitigation. Proceedings of the first national conference on carbon sequestration 5A4:1–14Google Scholar
  5. Becker EW (ed) (1994) Microalgae biotechnology and microbiology. Cambridge University Press, CambridgeGoogle Scholar
  6. Becker EW (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 312–351Google Scholar
  7. Benemann J (1997) CO2 mitigation with microalgal systems. Energ Convers Manage 38:475–479CrossRefGoogle Scholar
  8. Benemann JR, Oswald WJ (1996) Systems and economics analysis of microalgae ponds for conversion of CO2 to biomass. US Department of Energy, Pittsburg, pp 42–65CrossRefGoogle Scholar
  9. Berberoglu H, Gomez PS, Pilon L (2009) Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for CO2 fixation and biofuel production. J Quant Spectrosc 110:1879–93CrossRefGoogle Scholar
  10. Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations-response surface methodology analysis. Energ Convers Manag 50(2):262–267CrossRefGoogle Scholar
  11. Bolton JR, Hall DO (1991) The maximum efficiency of photosynthesis. Photochem Photobiol 53:545–548CrossRefGoogle Scholar
  12. Borowitzka MA (1992) Algal biotechnology products and processes-matching science and economics. J Appl Phycol 4:267–279CrossRefGoogle Scholar
  13. Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change. doi: 10.1007/s11027-010-9271-9
  14. Boyd PW et al (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702CrossRefGoogle Scholar
  15. Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extraction of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  16. Brown LM (1996) Uptake of carbon dioxide from flue gas by microalgae. Energ Convers Manage 37(6–8):1363–1367CrossRefGoogle Scholar
  17. Buesseler KO, Doney SC, Karl DM et al (2008) Ocean iron fertilization moving forward in a sea of uncertainty. Science 319:162–163CrossRefGoogle Scholar
  18. Chapin FS, Matson PA, Mooney HA (2002) Principles of ecosystems of ecology. Springer, New YorkGoogle Scholar
  19. Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101:6751–60CrossRefGoogle Scholar
  20. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  21. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370CrossRefGoogle Scholar
  22. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205CrossRefGoogle Scholar
  23. Danquah MK, Gladman B, Moheimani N, Forde GM (2009) Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151:73–78CrossRefGoogle Scholar
  24. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energ 88:3524–3531CrossRefGoogle Scholar
  25. de Morais MG, Costa JAV (2007a) Biofixation of carbon dioxide by Spirulina sp. And Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445CrossRefGoogle Scholar
  26. de Morais MG, Costa JAV (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ Convers Manage 48(7):2169–2173CrossRefGoogle Scholar
  27. Del Campo JA, Garcia-Gonzales M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–117CrossRefGoogle Scholar
  28. Dhingra R, Ahluwalia AS (2007) Genus Phormidium kutzing ex Gomont (Cyanoprokaryote) from diverse habitats of Punjab. J Indian Bot Soc 86(3&4):86–94Google Scholar
  29. Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117CrossRefGoogle Scholar
  30. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwater Science, London, p 375Google Scholar
  31. Feely RA, Orr JC, Fabry VJ, Kleypas JA, Sabine CL, Landgon C (2009) Present and future changes in seawater chemistry due to ocean acidification. In: Mcpherson BJ, Sundquist ET (eds) AGU Monograph on carbon sequestration and its role in the global carbon cycleGoogle Scholar
  32. Fernández FGA, Camacho FG, Pérez JAS, Sevilla JMF, Grima EM (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58(6):605–616CrossRefGoogle Scholar
  33. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  34. Folger P (2009) The carbon cycle: Implications for climate change and congress. Congressional Research Service Report RL34059, pp. 7–57Google Scholar
  35. Gough C (2008) State of the art in carbon dioxide capture and storage in the UK: an experts’ review. Int J Greenhouse Gas Control 2:155–168CrossRefGoogle Scholar
  36. Graham LE, Wilcox LW (2000) Algae. Prentice-Hall, Inc., Upper Saddle RiverGoogle Scholar
  37. Gribbin J (1988) Any old iron? Nature 331:570CrossRefGoogle Scholar
  38. Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  39. Grobbelaar JU (2009) Factors governing algal growth in photobioreactors: the open versus closed debate. J Appl Phycol 21:489–492CrossRefGoogle Scholar
  40. Hader DP, Figueroa FL (1997) Photophysiology of marine microalgae. J Photochem Photobiol 66:1–14CrossRefGoogle Scholar
  41. Hall DO, Fernández AFG, Guerrero CE, Rao KK, Grima ME (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73CrossRefGoogle Scholar
  42. Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hirayama K, Matuzaki H, Tukamoto T, Sasaki S (1994) Carbon dioxide fixation by microalgal photosynthesis using actual flue gas from a power plant. Appl Biochem Biotechnol 45–46:799–809CrossRefGoogle Scholar
  43. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochem 31(10):3345–3348CrossRefGoogle Scholar
  44. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–47CrossRefGoogle Scholar
  45. Hase R, Oikawa H, Sasso C, Morito M, Watabe Y (2000) Photosynthetic production of microalgal biomass in a race way system under greenhouse conditions in Sendi City. J Biosci Bioeng 89:157–163CrossRefGoogle Scholar
  46. Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquacult Res 31:637–659CrossRefGoogle Scholar
  47. Herzog HJ, Drake EM (1996) Carbon dioxide recovery and disposal from large energy systems. Annu Rev Energ Env 21:145–166CrossRefGoogle Scholar
  48. Herzog H, Drake E, Adams E (1997) CO2 Capture, re-use and storage technologies for mitigating global climate change. White paper final report, Public Energy Laboratory, Massachusetts Institute of Technology, US Department of Energy Order No: DE-AF22-96PC01257Google Scholar
  49. Hirata S, Hayashitani M, Taya M, Tone S (1996) Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight collection device. J ferment bioeng 81(5):470–472CrossRefGoogle Scholar
  50. Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strategies Glob Chang 12(4):573–608CrossRefGoogle Scholar
  51. Hu Q, Sommerfeld M, Jarvis E, Ghiradi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639Google Scholar
  52. IPCC (2005) IPCC special report on carbon dioxide capture and storage. In: Houghton JT, Ding Y, Griggs DJ, Nouger M, van der Linden PJ, Xiaosu D (eds) Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  53. IPCC (2007a) Mitigation of climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  54. IPCC (2007b) The physical science basis. In: Solomon SD, Qin D, Manning M, Chen Z, Marquie M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Forth assessment report of the IPCC on climate change. Cambridge University Press, CambridgeGoogle Scholar
  55. Jacob-Lopes E, Scoparo CHG, Franco TT (2008) Rates of CO2 removal by a Aphanothece microscopica Nageli in tubular photobioreactors. Chem Eng Process 47:1371–9Google Scholar
  56. Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manage 51:894–900CrossRefGoogle Scholar
  57. Jenny H (1980) The soil resource: origin and behaviour. Springer, New YorkGoogle Scholar
  58. Jeong MJ, Gillis JM, Hwang JY (2003) Carbon dioxide mitigation by microalgal photosynthesis. Bull Korean Chem Soc 24(12):1763–1766CrossRefGoogle Scholar
  59. Kativu E, Hildebrandt D, Matambo T, Glasser D (2011) Fresh water microalgae growth. Environ Prog Sustain Energy. doi: 10.1002/ep.10600
  60. Kaya Y (1989) A grand strategy for global warming. Paper presented at Tokyo Conference on global environment, Tokyo, Japan, 11–13 September 1989Google Scholar
  61. Kumar A, Ergas S, Yuan X, Sahu A et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380CrossRefGoogle Scholar
  62. Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactor for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953CrossRefGoogle Scholar
  63. Kusmic C, Barsacchi R, Barsanti L, Gualteri P, Passarelli V (1999) Euglena gracilis as a source of the antioxidant vitamin E. Effects of culture conditions in the wild strain and in the natural mutant WZSL. J Appl Phycol 10:555–559CrossRefGoogle Scholar
  64. Lal R, Kimble J, Follett R (1998) Land use and soil carbon pools in terrestrial ecosystems. In: Lal R, Kimble J, Follett RF, Stewart BA (eds) Management of carbon sequestration in soil. CRC Lewis Publishers, Boca RatonGoogle Scholar
  65. Lampitt RS, Achterberg EP, Anderson TR, Hughes JA, Iglesias-Rodriguez MD, Kelly-Gerreyn BA, Lucas M, Popova EE, Sanders R, Shepherd JG, Smythe-Wright D, Yool A (2008) Ocean fertilization: a potential means of geoengineering? Philos Transact A Math Phys Eng Sci 366(1882):3919–3945CrossRefGoogle Scholar
  66. Laws EA, Berning JL (1991) A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: implications for use of power plant stack gases. Biotechnol bioeng 37(10):936–947CrossRefGoogle Scholar
  67. Lenton TM, Vaughan NE (2009) The radiative forcing potential of different climate geoengineering options. Atmos Chem Phys Discuss 9:2559–2608CrossRefGoogle Scholar
  68. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735CrossRefGoogle Scholar
  69. Li J, Xu SN, Su WW (2003) Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochem Eng J 14(1):51–65CrossRefGoogle Scholar
  70. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820Google Scholar
  71. Lopez CVG, Fernandez FGA, Sevilla JMF, Fernandez JFS, Garcia MCC, Grima EM (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in carbon dioxide removal processes. Bioresour Technol 100:5904–5910CrossRefGoogle Scholar
  72. Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energ Convers Manage 36:717–720CrossRefGoogle Scholar
  73. Marchetti E (1977) On geoengineering and the CO2 problem. Climate Change 1(1):59–68CrossRefGoogle Scholar
  74. Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129CrossRefGoogle Scholar
  75. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343CrossRefGoogle Scholar
  76. Matsumoto H, Hamasaki A, Sioji N, Ikuta Y (1997) Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J Chem Eng Jpn 30:620–624CrossRefGoogle Scholar
  77. Meinshausen MN, Hare MW, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162CrossRefGoogle Scholar
  78. Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41CrossRefGoogle Scholar
  79. Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270CrossRefGoogle Scholar
  80. Miura Y, Yamada W, Hirata K, Miyamoto K, Kiyohara M (1993) Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Appl biochem biotechnol 39(40):753–761CrossRefGoogle Scholar
  81. Miyairi S (1995) CO2 assimilation in a thermophilic cyanobacterium. Energy convers manage 36(6–9):763–766CrossRefGoogle Scholar
  82. Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712CrossRefGoogle Scholar
  83. Morita M, Watanabe Y, Saiki H (2002) Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol Bioeng 77(2):155–162CrossRefGoogle Scholar
  84. Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Biores Technol 96:451–458CrossRefGoogle Scholar
  85. Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815CrossRefGoogle Scholar
  86. Nagase H, Eguchi K, Yoshihara K, Hirata K, Miyamoto K (1998) Improvement of microalgal NOx removal in bubble column and airlift reactors. J ferment bioeng 86(4):421–423CrossRefGoogle Scholar
  87. Nakano Y, Miyatake K, Okuno H, Hamazaki K et al (1996) Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta Horticulturae 440(9):49–54Google Scholar
  88. Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH et al (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett 23:1229–1234CrossRefGoogle Scholar
  89. Oilgae (2011). Oilgae report. The comprehensive guide for algae-based Carbon Capture. http://www.oilgae.com/ref/report/download.php?name=The_Comprehensive_Guide_for_Algae-based_Carbon_Capture.pdf. Cited 21 Mar 2012
  90. Ono E, Cuello JL (2003) Selection of optimal microalgae species for CO2 sequestration. In: proceedings of the 2nd annual conference on carbon sequestration, alexandria, pp 1–7Google Scholar
  91. Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL Jr, Inomata H (2009) Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale. Biotechnol Prog 25(2):492–498CrossRefGoogle Scholar
  92. Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energ Policy 37:3428–3437CrossRefGoogle Scholar
  93. Patil V, Reitan KI, Knudsen G, Mortensen L, Kallqvist T, Olsen E, Vogt G, Gislerod HR (2005) Microalgae as source of polyunsaturated fatty acids for aquaculture. Curr Topics Plant Biol 6:57–65Google Scholar
  94. Pielke JRA (2009) An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy. Environmental Science & Policy 12(3):216–225CrossRefGoogle Scholar
  95. Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053CrossRefGoogle Scholar
  96. Pirt SJ (1983) Maximum photosynthetic efficiency: a problem to be resolved. Biotechnol Bioeng 24:1915–1922CrossRefGoogle Scholar
  97. Pirt SJ, Lee YK, Richmond A, Pirt MW (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J Chem Technol Biotechnol 30:25–34CrossRefGoogle Scholar
  98. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–77CrossRefGoogle Scholar
  99. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefGoogle Scholar
  100. Rados S, Vaclav B, Frantisek D (1975) CO2 balance in industrial cultivation of algae. Arch Hydrobiol 46(12):297–310Google Scholar
  101. Raja R, Hemaiswarya S, Kumar AN, Sridhar S, Rengasamy R (2008) A perspective on biotechnological potential of microalgae. Crit Rev Microbiol 34:34–77CrossRefGoogle Scholar
  102. Richmond A, Zou N (1999) Efficient utilization of high photon irradiance for mass production of photo autotrophic micro-organisms. J Appl Phycol 11:123–127CrossRefGoogle Scholar
  103. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G et al (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112CrossRefGoogle Scholar
  104. Rogelj J, Hare W, van Vuuren DP, Riahi K, Matthews B, Hanoaka T, Jiang K, Meinshausen M (2011) Emission pathways consistent with a 2°C global temperature limit. Nature Climate Change 1:413–418CrossRefGoogle Scholar
  105. Royal Society (2008) Sustainable biofuels: Prospects and challenges. Policy document 01/08, 978 0 85403 662 2Google Scholar
  106. Royal Society (2009) Geoengineering the climate: Science, governance and uncertainty. Report 10/09, 978 0 85403 773 5Google Scholar
  107. Safonova E, Kvitko KV, Iankevitch MI et al (2004) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci 4:347–353CrossRefGoogle Scholar
  108. Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energ Convers Manage 36:693–696CrossRefGoogle Scholar
  109. Sankar V, David K, Krastanov A (2011) Carbon dioxide fixation by Chlorella minutissima batch cultures in a stirred tank bioreactor. Biotechnol Biotechnol Eq 25(3):2468–2476CrossRefGoogle Scholar
  110. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, PrincetonGoogle Scholar
  111. Scurlock JMO, Johnson K, Olson RJ (2002) Estimating net primary productivity from grassland biomass dynamics measurement. Global Change Biol 8:736CrossRefGoogle Scholar
  112. Seckbach J, Gross H, Nathan MB (1971) Growth and Photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel J Bot 20:84–90Google Scholar
  113. Sidhu MA, Ahluwalia AS (2011) Water quality & cyanobacterial diversity in lower western Himachal lakes. Vegetos 24(2):165–170Google Scholar
  114. Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95CrossRefGoogle Scholar
  115. Smetacek V, Naqvi SWA (2008) The next generation of iron fertilization experiments in the Southern Ocean. Philosophical Transactions of the Royal Society A 366(1882):3947–3967CrossRefGoogle Scholar
  116. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae- review. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  117. Steinberg M (1984) An analysis of concepts for controlling atmospheric carbon dioxide, Report DOE/CH/00016-1. Brookhaven National Laboratory, BrookhavenGoogle Scholar
  118. Stewart C, Hessami MA (2005) A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach. Energy Convers Manage 46:403–20CrossRefGoogle Scholar
  119. Strong AS, Miller CC, Cullen J (2009) Ocean fertilization: time to move on. Nature 461(17):347–348CrossRefGoogle Scholar
  120. Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energ Policy 38:5892–5901CrossRefGoogle Scholar
  121. Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in iran. Renew Sust Energ Rev 15:1918–1927CrossRefGoogle Scholar
  122. Tamiya H (1957) Mass culture of algae. Annu Rev Plant Physiol 8:309–333CrossRefGoogle Scholar
  123. Tapie P, Bernard A (1988) Microalgae production technical and economic evaluations. Biotechnol Bioeng 32(7):873–885CrossRefGoogle Scholar
  124. Taylor G (2008) Biofuels and biorefinery concept. Energ Policy 36:4406–4409CrossRefGoogle Scholar
  125. Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57Google Scholar
  126. Tsuda A et al (2003) A mesoscale iron enrichment in the western subarctiv Pacific induces a large centric diatom bloom. Science 300:958–961CrossRefGoogle Scholar
  127. USDOE (2009) National Algal Biofuel Technology Roadmap. Biomass Program/https://ecenter.doe.gov/iips/faopor.nsf/UNID/79E3ABCACC9AC14A852575CA00799D99/$file/AlgalBiofuels_Roadmap_7.pdfS. Cited 12 Feb 2010
  128. Vasudevan P, Briggs M (2008) Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol 35(5):421–430CrossRefGoogle Scholar
  129. Wang B, Li YQ, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–18CrossRefGoogle Scholar
  130. Wang LA, Min M, Li YC, Chen P, Chen YF, Liu YH et al (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–86CrossRefGoogle Scholar
  131. Wijffels RH (2007) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26(1):26–31CrossRefGoogle Scholar
  132. WorldBankReport (2011) State and trends of the carbon market 2010. Washington DC, p 16Google Scholar
  133. Xia J, Gao K (2003) Effects of doubled atmospheric CO2 concentration on the photosynthesis and growth of Chlorella pyrenoidosa cultured at varied levels of light. Fisheries Sci 69(4):767–771CrossRefGoogle Scholar
  134. Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energ Convers Manage 46:1868–1876CrossRefGoogle Scholar
  135. Yun YS, Lee SB, Park JM, Lee C, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Tech Biotechnol 69:451–455CrossRefGoogle Scholar
  136. Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuelfired power plant flue gas. Energy Convers Mgmt 36(6–9):707–712CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Laboratory of Algal Biology and Diversity, Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations