Carbon credit for hydroelectric dams as a source of greenhouse-gas emissions: the example of Brazil’s Teles Pires Dam

ORIGINAL ARTICLE

Abstract

Carbon credit is granted to hydroelectric dams under the United Nations Framework Convention on Climate Change Kyoto Protocol’s Clean Development Mechanism (CDM) under the assumptions that (1) the dams would not be built without CDM funding and (2) over the 7 to 10-year duration of the projects the dams would have minimal emissions as compared to the fossil fuel-generated electricity they displace. Both of these assumptions are false, especially in the case of tropical dams such as those planned in Amazonia. Brazil’s Teles Pires Dam, now under construction, provides a concrete example indicating the need for reform of CDM regulations by eliminating credit for hydroelectric dams.

Keywords

Amazonia Dams Global warming Greenhouse gas emissions Hydroelectric dams Methane Mitigation 

References

  1. Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, dos Santos MA, Matvienko B. (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-years old tropical reservoir (Petit-Saut, French Guiana). Global Biogeochem Cycles 19: GB 4007, doi: 10.1029/2005GB002457
  2. Brazil, CIMC (Comitê Interministerial sobre Mudança do Clima) (2008) Plano Nacional sobre Mudança do Clima—PNMC—Brasil. Ministério do Meio Ambiente, Brasília, DF, Brazil, 129 pp [available at: http://www.mma.gov.br/estruturas/imprensa/_arquivos/96_01122008060233.pdf]
  3. Brazil, MME (Ministério de Minas e Energia) (2011) Plano Decenal de Expansão de Energia 2020. MME, Empresa de Pesquisa Energética (EPE). Brasília, DF, Brazil. 2 vols. [available at: http://www.epe.gov.br/PDEE/20111229_1.pdf]
  4. CDM Methodologies Panel (2006) Draft thresholds and criteria for the elegibility of hydroelectric reservoirs as CDM projects. Report of the Nineteenth Meeting of the Methodologies Panel, Annex 10. UNFCCC, Bonn, Germany [available at: http://cdm.unfccc.int/Panels/meth/meeting/mp_06.html#019]
  5. Chu S (2012) Spreadsheet of hydro projects in the CDM project pipeline. International Rivers, Berkeley, California, USA. 30 January 2012. [available at: http://www.internationalrivers.org/en/node/1785]
  6. Delmas R, Richard S, Guérin F, Abril G, Galy-Lacaux C, Delon C, Grégoire A (2004) Long term greenhouse gas emissions from the hydroelectric reservoir of Petit Saut (French Guiana) and potential impacts. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gas emissions: fluxes and processes. Hydroelectric Reservoirs and Natural Environments. Springer, New York, pp 293–312Google Scholar
  7. dos Santos MA, Rosa LP, Matvienko B, dos Santos EO, D’Almeida Rocha CHE, Sikar E, Silva MB, Ayr Júnior MPB (2008) Emissões de gases de efeito estufa por reservatórios de hidrelétricas. Oecologia Brasiliensis 12(1):116–129Google Scholar
  8. Duchemin É, Huttunen JT, Tremblay A, Delmas R, Menezes CFS. (2006) Appendix 3. CH4 emissions from flooded land: Basis for future methodological development. pp. Ap.3.1-Ap3.8 In: Eggleson S, Buendia L, Miwa K, Ngara T, Tanabe K. (eds) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories, IPCC National Greenhouse Gas Inventories Programme Technical Support Unit, Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan, Irregular pagination. [available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_p_Ap3_WetlandsCH4.pdf]
  9. Duchemin É, Lucotte M, Canuel R, Queiroz AG, Almeida DC, Pereira HC, Dezincourt J (2000) Comparison of greenhouse gas emissions from an old tropical reservoir with those of other reservoirs worldwide. Verhandlungen International Vereinigung für Limnologie 27:1–5Google Scholar
  10. Earth Negotiations Bulletin (2006) Summary of the 25th session of the Intergovernmental Panel on Climate Change: 26–28 April 2006. Earth Negotiations Bulletin 12(295): 3. [available at: http://www.iisd.ca/download/pdf/enb12295e.pdf]
  11. Ecopart (Ecopart Assessoria em Negócios Empresariais Ltda) (2011) Project design document form (CDM PDD)—Version 03. [available at: http://cdm.unfccc.int/filestorage/G/Y/E/GYE0D3RQV8K9I4S1WCO2JTFHANLU7M/Teles_Pires_PDD_24012012.pdf?t=NUx8bHp4NjY2fDCy286b2TU-8uLt2EV00sA6]
  12. Fearnside PM (1995) Hydroelectric dams in the Brazilian Amazon as sources of 'greenhouse' gases. Environ Conserv 22(1):7–19. doi:10.1017/S0376892900034020 CrossRefGoogle Scholar
  13. Fearnside PM (1996) Hydroelectric dams in Brazilian Amazonia: response to Rosa, Schaeffer & dos Santos. Environ Conserv 23(2):105–108. doi:10.1017/S0376892900038467 CrossRefGoogle Scholar
  14. Fearnside PM (2001) Soybean cultivation as a threat to the environment in Brazil. Environ Conserv 28(1):23–38. doi:10.1017/S0376892901000030 CrossRefGoogle Scholar
  15. Fearnside PM (2002a) Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruí Dam) and the energy policy implications. Water, Air and Soil Pollution 133(1–4):69–96. doi:10.1023/A:1012971715668 CrossRefGoogle Scholar
  16. Fearnside PM (2002b) Avança Brasil: environmental and social consequences of Brazil’s planned infrastructure in Amazonia. Environ Manage 30(6):748–763. doi:10.1007/s00267-002-2788-2 CrossRefGoogle Scholar
  17. Fearnside PM (2004) Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly “clean” energy source. Climatic Change 66(2–1):1–8. doi:10.1023/B:CLIM.0000043174.02841.23 CrossRefGoogle Scholar
  18. Fearnside PM (2005a) Brazil's Samuel Dam: lessons for hydroelectric development policy and the environment in Amazonia. Environ Manage 35(1):1–19. doi:10.1007/s00267-004-0100-3 CrossRefGoogle Scholar
  19. Fearnside PM (2005b) Do hydroelectric dams mitigate global warming? The case of Brazil’s Curuá-Una Dam. Mitigat and Adaptat Strat for Global Change 10(4):675–691. doi:10.1007/s11027-005-7303-7 CrossRefGoogle Scholar
  20. Fearnside PM (2006a) Greenhouse gas emissions from hydroelectric dams: reply to Rosa et al. Climatic Change 75(1–2):103–109. doi:10.1007/s10584-005-9016-z CrossRefGoogle Scholar
  21. Fearnside PM (2006b) Dams in the Amazon: Belo Monte and Brazil’s Hydroelectric Development of the Xingu River Basin. Environ Manage 38(1):16–27. doi:10.1007/s00267-005-00113-6 CrossRefGoogle Scholar
  22. Fearnside PM (2007) Brazil’s Cuiabá-Santarém (BR-163) Highway: the environmental cost of paving a soybean corridor through the Amazon. Environmental Management 39(5):601–614. doi:10.1007/s00267-006-0149-2 CrossRefGoogle Scholar
  23. Fearnside PM (2008) Hidrelétricas como “fábricas de metano”: O papel dos reservatórios em áreas de floresta tropical na emissão de gases de efeito estufa. Oecologia Brasiliensis 12(1):100–115. [English translation available at: http://philip.inpa.gov.br/publ_livres/mss%20and%20in%20press/Fearnside%20Hydro%20GHG%20framework.pdf]
  24. Fearnside PM (2009) As hidrelétricas de Belo Monte e Altamira (Babaquara) como fontes de gases de efeito estufa. Novos Cadernos NAEA 12(2):5–56. [English translation available at: http://philip.inpa.gov.br/publ_livres/mss%20and%20in%20press/Belo%20Monte%20emissions-Engl.pdf]
  25. Fearnside PM (2011) Gases de efeito estufa no EIA-RIMA da hidrelétrica de Belo Monte. Novos Cadernos NAEA 14(1):5–19Google Scholar
  26. Fearnside PM, Barbosa RI (1996) Political benefits as barriers to assessment of environmental costs in Brazil's Amazonian development planning: the example of the Jatapu Dam in Roraima. Environ Manage 20(5):615–630. doi:10.1007/BF01204135 CrossRefGoogle Scholar
  27. Fearnside PM, Graça PMLA (2006) BR-319: Brazil’s Manaus-Porto Velho Highway and the potential impact of linking the arc of deforestation to central Amazonia. Environ Manage 38(5):705–716. doi:10.1007/s00267-005-0295-y CrossRefGoogle Scholar
  28. Forster P et al (2007) Climate change 2007: the physical science basis. Contribution of working group to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234Google Scholar
  29. Galy-Lacaux C, Delmas R, Jambert C, Dumestre J-F, Labroue L, Richard S, Gosse P (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Global Biogeochem Cycles 11(4):471–483CrossRefGoogle Scholar
  30. Galy-Lacaux C, Delmas R, Kouadio J, Richard S, Gosse P (1999) Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. Global Biogeochem Cycles 13(2):503–517CrossRefGoogle Scholar
  31. Guérin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R (2006) Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophys Res Lett 33:L21407. doi:10.1029/2006GL027929 CrossRefGoogle Scholar
  32. Guérin F, Abril G, Tremblay A, Delmas R (2008) Nitrous oxide emissions from tropical hydroelectric reservoirs. Geophys Res Lett 35:L06404. doi:10.1029/2007GL033057 CrossRefGoogle Scholar
  33. Gunkel G (2009) Hydropower—a green energy? Tropical reservoirs and greenhouse gas emissions. CLEAN—Soil, Air, Water 37(9):726–734. doi:10.1002/clen.200900062
  34. IPCC (Intergovernmental Panel on Climate Change) (1997) Revised 1996 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. Houghton JT, Meira Filho LG, Lim B, Treanton K, Mamaty I, Bonduki Y, Griggs DJ, Callender BA (eds), IPCC, Bracknell, UK, 3 vols [available at: http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html]
  35. IPCC (Intergovernmental Panel on Climate Change) (2003) IPCC Good Practice Guidance for LULUCF, Appendix 3a.3 Wetlands Remaining Wetlands: Basis for future methodological development. Institute for Global Environmental Strategies (IGES), Kanagawa, Japan, irregular pagination. [available at: http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_contents.html]
  36. IPCC (Intergovernmental Panel on Climate Change) (2011) Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change. Edenhofer O, Madruga RP, Sokona Y, Seyboth K, Eickemeier P, Matschoss P, Hansen G, Kadner S, Schlomer S, Zwickel T von Stechow C (eds), Cambridge University Press, Cambridge, UK, 1075 pp [available at: http://www.ipcc.ch/pdf/special-reports/srren/srren_full_report.pdf]
  37. Kayabi, Apiaká, Munduruku (2011) Manifesto Kayabi, Apiaká e Munduruku contra os aproveitamentos hidrelétricos no Rio Teles Pires. Aldeia Kururuzinho Terra Indigena Kayabi, Alta Floresta, Mato Grosso, Brazil, 9 pp [available at: http://www.internationalrivers.org/files/manifesto%20kayabi-mundurucu-apiaca-dez2011.pdf]
  38. Kemenes A, Forsberg BR, Melack JM (2007) Methane release below a tropical hydroelectric dam. Geophys Res Lett 34:L12809. doi:10.1029/2007GL029479 55 CrossRefGoogle Scholar
  39. Kemenes A, Forsberg BR, Melack JM (2008) As hidrelétricas e o aquecimento global. Ciência Hoje 41(145):20–25Google Scholar
  40. Kemenes A, Forsberg BR, Melack JM (2011) CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). Jour Geophys Res 116:G03004. doi:10.1029/2010JG001465 CrossRefGoogle Scholar
  41. McCully P (2006) Fizzy science: loosening the hydro industry’s grip on greenhouse gas emissions research. International Rivers Network, Berkeley, California, USA. 24 pp [available at: http://www.irn.org/pdf/greenhouse/FizzyScience2006.pdf]
  42. Millikan B (2011) Dams and Hidrovias in the Tapajos Basin of Brazilian Amazonia: Dilemmas and Challenges for Netherlands-Brazil relations. International Rivers Technical Report. International Rivers, Berkeley, California, USA, 36 pp. [available at: http://www.bothends.org/uploaded_files/41110615_Int_Rivers_report_Tapajos.pdf]
  43. Millikan B (2012) Comments to PJRCES on the Teles Pires Hydropower Project (Brazil). [available at: http://www.internationalrivers.org/node/7188]
  44. Monteiro T (2011a) Três hidrelétricas ameaçam indígenas no rio Teles Pires. 22 August 2011. [available at: http://telmadmonteiro.blogspot.com/2011/08/tres-hidreletricas-ameacam-indigenas-no.html]
  45. Monteiro T (2011b) Hidrelétricas ameaçam indígenas Munduruku na bacia do rio Teles Pires (Parte II). 26 August 2011. [available at: http://telmadmonteiro.blogspot.com/2011/08/hidreletricas-ameacam-indigenas.html]
  46. MPF (Ministério Público Federal) (2012) MP pede suspensão do licenciamento e obras da usina de Teles Pires por falta de consulta a indígenas. MPF, Belém, Pará, Brazil. [available at: http://www.prpa.mpf.gov.br/news/2012/mp-pede-suspensao-do-licenciamento-e-obras-da-usina-de-teles-pires-por-falta-de-consulta-a-indigenas]
  47. Ometto JP, Pacheco FS, Cimbleris ACP, Stech JL, Lorenzzetti JA, Assireu A, Santos MA, Matvienko B, Rosa LP, Galli CS, Abe DS, Tundisi JG, Barros NO, Mendonça RF, Roland F (2011) Carbon dynamic and emissions in Brazilian hydropower reservoirs. In: de Alcantara EH (ed) Energy resources: development, distribution, and exploitation. Nova, Hauppauge, pp 155–188Google Scholar
  48. Pueyo S, Fearnside PM (2011) Emissões de gases de efeito estufa dos reservatórios de hidrelétricas: Implicações de uma lei de potência. Oecologia Australis 15(2):114–127. Doi: 10.4257/oeco.2011.1502.02 [English translation available at: http://philip.inpa.gov.br/publ_livres/mss%20and%20in%20press/Pueyo%20&%20Fearnside-GHGs%20FROM%20%20RESERVOIRS--engl.pdf]
  49. Reid WV, Goldemberg J (1998) Developing countries are combating climate change: actions in developing countries that slow growth in carbon emissions. Energy Policy 26(3):233–237CrossRefGoogle Scholar
  50. Rosa LP, dos Santos MA, Matvienko B, Sikar E, dos Santos EO (2006) Scientific errors in the Fearnside comments on greenhouse gas emissions (GHG) from hydroelectric dams and response to his political claiming’. Climatic Change 75(1–2):91–102. doi:10.1007/s10584-005-9046-6 CrossRefGoogle Scholar
  51. Rosa LP, dos Santos MA, Matvienko B, dos Santos EO, Sikar E (2004) Greenhouse gases emissions by hydroelectric reservoirs in tropical regions. Climatic Change 66(1–2):9–21CrossRefGoogle Scholar
  52. Rosa LP, dos Santos MA, Tundisi JG, Sikar BM (1997) Measurements of greenhouse gas emissions in Samuel, Tucuruí and Balbina Dams. In: Rosa LP, dos Santos MA (eds) Hydropower plants and greenhouse gas emissions. Coordenação dos Programas de Pós-Graduação em Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, pp 41–55Google Scholar
  53. Rosa LP, Schaeffer R, dos Santos MA (1996) Are hydroelectric dams in the Brazilian Amazon significant sources of 'greenhouse' gases? Environ Conserv 23(2):2–6CrossRefGoogle Scholar
  54. Santos SMSBM, Hernandez FM (eds) (2009) Painel de Especialistas: Análise Crítica do Estudo de Impacto Ambiental do Aproveitamento Hidrelétrico de Belo Monte. Painel de Especialistas sobre a Hidrelétrica de Belo Monte, Belém, Pará, Brazil, 230 pp. [available at: http://www.internationalrivers.org/files/Belo%20Monte%20pareceres%20IBAMA_online%20(3).pdf]
  55. Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326:716–718CrossRefGoogle Scholar
  56. WCD (World Commission on Dams) (2000) Dams and development: a new framework for decision making. Earthscan, London, UK, 404 pp. [available at: http://www.dams.org/index.php?option=com_content&view=article&id=49&Itemid=29]
  57. Yan K (2012) The global CDM hydro hall of shame. International Rivers, Berkeley, California, USA. 02/02/2012. [available at: http://www.internationalrivers.org/en/node/7143]

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.National Institute for Research in Amazonia (INPA)ManausBrazil

Personalised recommendations